1,855 research outputs found

    Use of natural rubber membranes as support for powder TiO2 and Ag/TiO2 photocatalysts

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)The purpose of this study was to synthesize TiO2-polymer composites able to act as photocatalyst membranes. TiO2 catalysts were prepared using the sol-gel method to contain 0.0, 0.5, 1.0, and 2.0 wt.% of embedded Ag particles, subsequently incorporated into natural rubber latex at a weight fraction of 15%. Samples of these ceramic powders were suspended in a latex emulsion (natural rubber), cast in Petri dishes and slowly dried in an oven. The resulting materials were evaluated by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray, diffuse reflectance spectroscopy, differential scanning calorimetry, thermogravimetry, and photocatalytic assaying using methylene blue as an organic pollutant reference. All composite membranes exhibited good photoactivity conferred by TiO2 powder, with 98% dye fading after 300 min of ultraviolet irradiation.The purpose of this study was to synthesize TiO2-polymer composites able to act as photocatalyst membranes. TiO2 catalysts were prepared using the sol-gel method to contain 0.0, 0.5, 1.0, and 2.0 wt.% of embedded Ag particles, subsequently incorporated in273575583CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFUNDECT - FUNDAÇÃO DE APOIO AO DESENVOLVIMENTO DO ENSINO, CIÊNCIA E TECNOLOGIA DO ESTADO DE MATO GROSSO DO SUL |Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)sem informaçãosem informaçãosem informaçãosem informaçãoThe authors wish to thank the Brazilian funding agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Apoio ao Desenvolvimento do Ensino, Ciênci

    Characterization of Novel OmpA-Like Protein of Leptospira interrogans That Binds Extracellular Matrix Molecules and Plasminogen

    Get PDF
    Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease of human and veterinary concern. The identification of novel proteins that mediate host-pathogen interactions is important for understanding the bacterial pathogenesis as well as to identify protective antigens that would help fight the disease. We describe in this work the cloning, expression, purification and characterization of three predicted leptospiral membrane proteins, LIC10258, LIC12880 (Lp30) and LIC12238. We have employed Escherichia coli BL21 (SI) strain as a host expression system. Recently, we have identified LIC12238 as a plasminogen (PLG)-binding receptor. We show now that Lp30 and rLIC10258 are also PLG-receptors of Leptospira, both exhibiting dose-dependent and saturating binding (KD, 68.8±25.2 nM and 167.39±60.1 nM, for rLIC10258 and rLIC12880, respectively). In addition, LIC10258, which is a novel OmpA-like protein, binds laminin and plasma fibronectin ECM molecules and hence, it was named Lsa66 (Leptospiral surface adhesin of 66 kDa). Binding of Lsa66 to ECM components was determined to be specific, dose-dependent and saturable, with a KD of 55.4±15.9 nM to laminin and of 290.8±11.8 nM to plasma fibronectin. Binding of the recombinant proteins to PLG or ECM components was assessed by using antibodies against each of the recombinant proteins obtained in mice and confirmed by monoclonal anti-polyhistidine antibodies. Lsa66 caused partial inhibition on leptospiral adherence to immobilized ECM and PLG. Moreover, this adhesin and rLIC12238 are recognized by antibodies in serum samples of confirmed leptospirosis cases. Thus, Lsa66 is a novel OmpA-like protein with dual activity that may promote the attachment of Leptospira to host tissues and may contribute to the leptospiral invasion. To our knowledge, this is the first leptospiral protein with ECM and PLG binding properties reported to date

    Exploring innovative Leishmaniasis treatment: drug targets from pre-clinical to clinical findings

    Get PDF
    Leishmaniasis is a group of tropical diseases caused by parasitic protozoa belonging to the genus Leishmania. The disease is categorized in cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), and visceral leishmaniasis (VL). The conventional treatment is complex and can present high toxicity and therapeutic failures. Thus, there is a continuing need to develop new treatments. In this review, we focus on the novel molecules described in the literature with potential leishmanicidal activity, categorizing them in pre-clinical (invitro, invivo), drug repurposing and clinical research.This research was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico for the Scientific grants (CNPq 301964/2019-0 Chamada No. 06/2019, Chamada CNPq No. 01/2019) and Portuguese Science and Technology Foundation, Ministry of Science and Education (FCT/MEC) through the sponsorship of the project M-ERA-NET-0004/2015-PAIRED (strategic fund), co-financed by FEDER, under the Partnership Agreement PT2020. We would like to thank Tiago Branquinho Oliveira for the help provided in drawing Figure 3.info:eu-repo/semantics/publishedVersio

    Plasminogen Binding Proteins and Plasmin Generation on the Surface of Leptospira

    Get PDF
    Leptospirosis is considered a neglected infectious disease of human and veterinary concern. Although extensive investigations on host-pathogen interactions have been pursued by several research groups, mechanisms of infection, invasion and persistence of pathogenic Leptospira spp. remain to be elucidated. We have reported the ability of leptospires to bind human plasminogen (PLG) and to generate enzimatically active plasmin (PLA) on the bacteria surface. PLA-coated Leptospira can degrade immobilized ECM molecules, an activity with implications in host tissue penetration. Moreover, we have identified and characterized several proteins that may act as PLG-binding receptors, each of them competent to generate active plasmin. The PLA activity associated to the outer surface of Leptospira could hamper the host immune attack by conferring the bacteria some benefit during infection. The PLA-coated leptospires obstruct complement C3b and IgG depositions on the bacterial surface, most probably through degradation. The decrease of leptospiral opsonization might be an important aspect of the immune evasion strategy. We believe that the presence of PLA on the leptospiral surface may (i) facilitate host tissue penetration, (ii) help the bacteria to evade the immune system and, as a consequence, (iii) permit Leptospira to reach secondary sites of infection

    Evaluation of the Expression and Protective Potential of Leptospiral Sphingomyelinases

    Get PDF
    Leptospirosis is a zoonotic disease of global distribution, which affects both animals and humans. Pathogenic leptospires, the bacteria that cause this disease, require iron for their growth, and these spirochetes probably use their hemolysins, such as the sphingomyelinases, as a way to obtain this important nutrient from host red blood cells during infection. We expressed and purified the leptospiral sphingomyelinases Sph1, Sph2, Sph4, and SphH in a heterologous system. However, the recombinant proteins were not able to lyse sheep erythrocytes, despite having regular secondary structures. Transcripts for all sphingomyelinases tested were detected by RT-PCR analyses, but only Sph2 and SphH native proteins could be detected in Western blot assays using Leptospira whole extracts as well as in renal tubules of infected hamsters. Moreover, antibodies present in the serum of a human patient with laboratory-confirmed leptospirosis recognized Sph2, indicating that this sphingomyelinase is expressed and exposed to the immune system during infection in humans. However, in an animal challenge model, none of the sphingomyelinases tested conferred protection against leptospirosis.Instituto de Biotecnología y Biología Molecula

    The Theoretical Description for Chlorantraniliprole Electrochemical Determination, Assisted by Squaraine Dye – Nano-CuS Composite

    Get PDF
    The theoretical description for the chlorantraniliprole electrochemical determination, assisted by the hybrid composite of squaraine dye with CuS nanoparticles has been described. The correspondent reaction mechanism has been proposed, and the correspondent mathematical model has been developed and analyzed by means of linear stability theory and bifurcation analysis. It has been shown that the chlorantraniprole electrochemical anodical determination on high potential may be efficiently provided by cupper sulfide nanoparticles, stabilized by the squaraine dye. On the other hand, the oscillatory and monotonic instability is also possible, being caused by DEL influences of the electrochemical stage. DOI: http://dx.doi.org/10.17807/orbital.v13i3.151

    In Vitro Identification of Novel Plasminogen-Binding Receptors of the Pathogen Leptospira interrogans

    Get PDF
    Background: Leptospirosis is a multisystem disease caused by pathogenic strains of the genus Leptospira. We have reported that Leptospira are able to bind plasminogen (PLG), to generate active plasmin in the presence of activator, and to degrade purified extracellular matrix fibronectin. Methodology/Principal Findings: We have now cloned, expressed and purified 14 leptospiral recombinant proteins. The proteins were confirmed to be surface exposed by immunofluorescence microscopy and were evaluated for their ability to bind plasminogen (PLG). We identified eight as PLG-binding proteins, including the major outer membrane protein LipL32, the previously published rLIC12730, rLIC10494, Lp29, Lp49, LipL40 and MPL36, and one novel leptospiral protein, rLIC12238. Bound PLG could be converted to plasmin by the addition of urokinase-type PLG activator (uPA), showing specific proteolytic activity, as assessed by its reaction with the chromogenic plasmin substrate, D-Val-Leu-Lys 4-nitroanilide dihydrochloride. The addition of the lysine analog 6-aminocaproic acid (ACA) inhibited the protein-PLG interaction, thus strongly suggesting the involvement of lysine residues in plasminogen binding. The binding of leptospiral surface proteins to PLG was specific, dose-dependent and saturable. PLG and collagen type IV competed with LipL32 protein for the same binding site, whereas separate binding sites were observed for plasma fibronectin. Conclusions/Significance: PLG-binding/activation through the proteins/receptors on the surface of Leptospira could help the bacteria to specifically overcome tissue barriers, facilitating its spread throughout the host.FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo)CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico)Fundacao Butantan, BrazilFAPESP (Brazil
    corecore