37 research outputs found

    Haptoglobin study in myasthenia gravis

    Get PDF
    Objective: A cross-sectional study of haptoglobin (Hp) in myasthenia gravis (MG) was designed, with, the objective to identify its values and correlate them with different disease status. Method: 46 patients were enrolled in the study, all having disease severity established according to the quantitative myasthenia gravis strength scores (QMGSS). Based on the functional scale determined by Myasthenia Gravis Foundation of America (MGFA) recommendations, patients were classified as having: complete stable remission (CSR; n=10); minimal manifestations-O (MMO; n=6), minimal manifestations-1 (MM1; n=4); pharmacological remission (PR; n=6). Two other groups participated: thymomatous patients (T; n=10) and patients without imunosuppression or thymectomy, until the assessment for Hp (WIT; n=10). Hp dosage was done by immunonephelometry, blindly to clinical data. Student's t-test, Anova test and linear regression were employed for statistical analyses. Results: Statistically significant differences occurred between CSR+MMOxWIT groups (86.62x157.57, p < 0.001) and PR+MM1xWIT groups (73.93x157.57, p < 0.001). Linear regression showed correlation between Hp levels and QMGSS (r=0.759, p < 0.001). Conclusion: Our results suggest that Hp may be useful in clinical practice as a disease severity marker in MG.662A22923

    Soil water-holding capacity and monodominance in Southern Amazon tropical forests

    Get PDF
    Background and aims: We explored the hypothesis that low soil water-holding capacity is the main factor driving the monodominance of Brosimum rubescens in a monodominant forest in Southern Amazonia. Tropical monodominant forests are rare ecosystems with low diversity and high dominance of a single tree species. The causes of this atypical condition are still poorly understood. Some studies have shown a relationship between monodominance and waterlogging or soil attributes, while others have concluded that edaphic factors have little or no explanatory value, but none has accounted for soil-moisture variation other than waterlogging. This study is the first to explicitly explore how low soil water-holding capacity influences the monodominance of tropical forests. Methods: We conducted in situ measurements of vertical soil moisture using electrical resistance collected over 1 year at 0–5; 35–40 and 75–80 cm depths in a B. rubescens monodominant forest and in an adjacent mixed-species forest in the Amazon-Cerrado transition zone, Brazil. Minimum leaf water potential (ιmin) of the seven most common species, including B. rubescens, and soil water-holding capacity for both forests were determined. Results: The vertical soil moisture decay pattern was similar in both forests for all depths. However, the slightly higher water availability in the monodominant forest and ιmin similarity between B. rubescens and nearby mixed forest species indicate that low water-availability does not cause the monodominance. Conclusions: We reject the hypothesis that monodominance of B. rubescens is primarily determined by low soil water-holding capacity, reinforcing the idea that monodominance in tropical forests is not determined by a single factor

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore