68,112 research outputs found

    The lattice Landau gauge gluon propagator: lattice spacing and volume dependence

    Full text link
    The interplay between the finite volume and finite lattice spacing is investigated using lattice QCD simulations to compute the Landau gauge gluon propagator. Comparing several ensembles with different lattice spacings and physical volumes, we conclude that the dominant effects, in the infrared region, are associated with the use of a finite lattice spacing. The simulations show that decreasing the lattice spacing, while keeping the same physical volume, leads to an enhancement of the infrared gluon propagator. In this sense, the data from ÎČ=5.7\beta=5.7 simulations, which uses an a≈0.18a \approx 0.18 fm, provides a lower bound for the infinite volume propagator.Comment: Final version to appear in Phys Rev

    Fracturing the optimal paths

    Full text link
    Optimal paths play a fundamental role in numerous physical applications ranging from random polymers to brittle fracture, from the flow through porous media to information propagation. Here for the first time we explore the path that is activated once this optimal path fails and what happens when this new path also fails and so on, until the system is completely disconnected. In fact numerous applications can be found for this novel fracture problem. In the limit of strong disorder, our results show that all the cracks are located on a single self-similar connected line of fractal dimension Db≈1.22D_{b} \approx 1.22. For weak disorder, the number of cracks spreads all over the entire network before global connectivity is lost. Strikingly, the disconnecting path (backbone) is, however, completely independent on the disorder.Comment: 4 pages,4 figure

    Learning roadmaps for Higher Education

    Get PDF
    An integrated platform for the support of teaching activities as been developed and deployed at the Aveiro Norte Polytechnic School of the University of Aveiro. In this paper we present an approach to Learning Roadmaps for Higher Education based on this platform. The aprend.e platform – Electronic Integrated System for Learning and Training - has at its core a Learning Management System with a number of plugins. It represents a new challenge for the University of Aveiro for higher education and is already being at its core is the concept of learning roadmaps that act upon two fundamental axes: education and learning. For the teachers, it aims at becoming a self-supporting tool that stimulates the organization and management of the course materials (lectures, presentations, multimedia content, and evaluation materials, amongst others). For the students, the learning roadmap aims at promoting self-study and supervised study, endowing the pupil with the capabilities to find the relevant information and to capture the concepts in the study materials. The outcome will be a stimulating learning process together with an organized management of those materials

    Newtonian Perturbations on Models with Matter Creation

    Full text link
    Creation of Cold Dark Matter (CCDM) can macroscopically be described by a negative pressure, and, therefore, the mechanism is capable to accelerate the Universe, without the need of an additional dark energy component. In this framework we discuss the evolution of perturbations by considering a Neo-Newtonian approach where, unlike in the standard Newtonian cosmology, the fluid pressure is taken into account even in the homogeneous and isotropic background equations (Lima, Zanchin and Brandenberger, MNRAS {\bf 291}, L1, 1997). The evolution of the density contrast is calculated in the linear approximation and compared to the one predicted by the Λ\LambdaCDM model. The difference between the CCDM and Λ\LambdaCDM predictions at the perturbative level is quantified by using three different statistical methods, namely: a simple χ2\chi^{2}-analysis in the relevant space parameter, a Bayesian statistical inference, and, finally, a Kolmogorov-Smirnov test. We find that under certain circumstances the CCDM scenario analysed here predicts an overall dynamics (including Hubble flow and matter fluctuation field) which fully recovers that of the traditional cosmic concordance model. Our basic conclusion is that such a reduction of the dark sector provides a viable alternative description to the accelerating Λ\LambdaCDM cosmology.Comment: Physical Review D in press, 10 pages, 4 figure

    Large cities are less green

    Full text link
    We study how urban quality evolves as a result of carbon dioxide emissions as urban agglomerations grow. We employ a bottom-up approach combining two unprecedented microscopic data on population and carbon dioxide emissions in the continental US. We first aggregate settlements that are close to each other into cities using the City Clustering Algorithm (CCA) defining cities beyond the administrative boundaries. Then, we use data on CO2\rm{CO}_2 emissions at a fine geographic scale to determine the total emissions of each city. We find a superlinear scaling behavior, expressed by a power-law, between CO2\rm{CO}_2 emissions and city population with average allometric exponent ÎČ=1.46\beta = 1.46 across all cities in the US. This result suggests that the high productivity of large cities is done at the expense of a proportionally larger amount of emissions compared to small cities. Furthermore, our results are substantially different from those obtained by the standard administrative definition of cities, i.e. Metropolitan Statistical Area (MSA). Specifically, MSAs display isometric scaling emissions and we argue that this discrepancy is due to the overestimation of MSA areas. The results suggest that allometric studies based on administrative boundaries to define cities may suffer from endogeneity bias

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Universal behavior of spin-mediated energy transport in S=1/2 chain cuprates: BaCu2Si2O7 as an example

    Full text link
    The thermal conductivity of the spin-1/2 chain cuprate BaCu2Si2O7 was measured along different crystallographic directions in the temperature region between 0.5 and 300 K. The thermal conductivity along the chain direction considerably exceeds that along perpendicular directions. Near the antiferromagnetic transition at T_N = 9.2 K the data indicates enhanced scattering of phonons by critical fluctuations in the spin system. A comparison of the data above T_N with available results on similar materials reveals similarities in the main features of the temperature dependence of the mean free path of itinerant spin excitations. This universal behavior is most likely caused by the spin-lattice interaction.Comment: 7 pages, 3 figure

    Roughness exponents and grain shapes

    Full text link
    In surfaces with grainy features, the local roughness ww shows a crossover at a characteristic length rcr_c, with roughness exponent changing from α1≈1\alpha_1\approx 1 to a smaller α2\alpha_2. The grain shape, the choice of ww or height-height correlation function (HHCF) CC, and the procedure to calculate root mean-square averages are shown to have remarkable effects on α1\alpha_1. With grains of pyramidal shape, α1\alpha_1 can be as low as 0.71, which is much lower than the previous prediction 0.85 for rounded grains. The same crossover is observed in the HHCF, but with initial exponent χ1≈0.5\chi_1\approx 0.5 for flat grains, while for some conical grains it may increase to χ1≈0.7\chi_1\approx 0.7. The universality class of the growth process determines the exponents α2=χ2\alpha_2=\chi_2 after the crossover, but has no effect on the initial exponents α1\alpha_1 and χ1\chi_1, supporting the geometric interpretation of their values. For all grain shapes and different definitions of surface roughness or HHCF, we still observe that the crossover length rcr_c is an accurate estimate of the grain size. The exponents obtained in several recent experimental works on different materials are explained by those models, with some surface images qualitatively similar to our model films.Comment: 7 pages, 6 figures and 2 table
    • 

    corecore