262 research outputs found

    Chemical composition and antimicrobial properties of the essential oils of two Guadua Kunth species (Poaceae-Bambusoideae)

    Get PDF
    Bamboos are described as one of the most important renewables, easily obtained, and valuable of all forest resources. Brazil is the country with the greatest diversity of bamboo species in the New World [1]. One of the most important bamboo groups growing in South America belongs to the Guadua genus, from which two species, G. angustifolia Kunth. and G. chacoensis (Rojas Acosta) Londoño & P.M. Peterson, are morphologically closely related. Due to the taxonomic difficulties presented by the Guadua complex, the main objective of this work was to evaluate the potential of their volatile oils for distinguishing the closely related species and to evaluate new potential applications for these plants. Leaves of the taxa were collected at an Experimental Unit from the Agronomical Institute from Campinas (IAC) located in Tatuí-SP. The essential oils were obtained by hydrodistillation for 4 h, and component identification was performed by GC/MS [2]. The yields were found to be 0.027% and 0.00079% (w/w), for G. angustifolia and G. chacoensis, respectively. Terpenes and terpene-related compounds accounted for most of the compositions of the two samples. The major compounds of G. angustifolia oil were hexahydrofarnesyl acetone (23.1%) and (Z)-phytol (21.3%), while G. chacoensis oil was characterized by (E)-β-ionone (8.8%), hexadecanoic acid (6.8%), hexadecenoic acid (6.5%), (Z)-phytol (5.3%) and (E)-α-ionone (5.0%). The antimicrobial activity was assayed by a microdilution method in microplates [2] against Aspergillus brasiliensis, Candida albicans, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus; none of the oils exerted any considerable activity (MIC > 250 µg/mL), as only extracts with MIC < 100 µg/mL can be considered as candidates for developing new antimicrobial agents [3]

    In Vitro

    Get PDF
    Stryphnodendron species, popularly named “barbatimão,” are traditionally used in Brazil as anti-inflammatory agents. This study aimed to investigate the effect of barbatimão and 11 other species on the production of tumor necrosis factor-alpha (TNF-α) in lipopolysaccharide- (LPS-) stimulated THP-1 cells, as well as their anti-arthritis activity. The extracts of Stryphnodendron adstringens, Stryphnodendron obovatum, Campomanesia lineatifolia, and Terminalia glabrescens promoted a concentration-dependent inhibition of TNF-α. Mice injected with LPS in the knee joint were treated per os with fractions from the selected extracts. Both the organic (SAO) and the aqueous (SAA) fractions of S. adstringens promoted a dose-dependent reduction of leukocyte migration and neutrophil accumulation into the joint, but none of them reduced CXCL1 concentration in the periarticular tissue. In contrast, treatment with C. lineatifolia and T. glabrescens fractions did not ameliorate the inflammatory parameters. Analyses of SAO by Ultra Performance Liquid Chromatography (UPLC) coupled to electrospray ionization mass spectrometry (ESI-MS) led to the identification of gallic acid along with 11 prodelphinidins, characterized as monomers and dimers of the B-type. Our findings contribute to some extent to corroborating the traditional use of S. adstringens as an anti-inflammatory agent. This activity is probably related to a decrease of leukocyte migration into the inflammatory site. Polyphenols like gallic acid and prodelphinidins, identified in the active fraction, may contribute to the observed activity

    Cellular and Transcriptional Responses of Crassostrea gigas Hemocytes Exposed in Vitro to Brevetoxin (PbTx-2)

    Get PDF
    Hemocytes mediate a series of immune reactions essential for bivalve survival in the environment, however, the impact of harmful algal species and their associated phycotoxins upon bivalve immune system is under debate. To better understand the possible toxic effects of these toxins, Crassostrea gigas hemocytes were exposed to brevetoxin (PbTx-2). Hemocyte viability, monitored through the neutral red retention and MTT reduction assays, and apoptosis (Hoechst staining) remained unchanged during 12 h of exposure to PbTx-2 in concentrations up to 1000 µg/L. Despite cell viability and apoptosis remained stable, hemocytes incubated for 4 h with 1000 µg/L of PbTx-2 revealed higher expression levels of Hsp70 (p < 0.01) and CYP356A1 (p < 0.05) transcripts and a tendency to increase FABP expression, as evaluated by Real-Time quantitative PCR. The expression of other studied genes (BPI, IL-17, GSTO, EcSOD, Prx6, SOD and GPx) remained unchanged. The results suggest that the absence of cytotoxic effects of PbTx-2 in Crassostrea gigas hemocytes, even at high concentrations, allow early defense responses to be produced by activating protective mechanisms associated to detoxification (CYP356A1 and possibly FABP) and stress (Hsp70), but not to immune or to antioxidant (BPI, IL-17, EcSOD, Prx6, GPx and SOD) related genes

    Dentin deproteinization effect on bond strength of self-adhesive resin cements

    Get PDF
    This study examined the effect of deproteinization on the bond strength between self-adhesive resin cements and dentin surfaces that were untreated (control), acid-etched, or acid-etched and subjected to a post-etch deproteinization treatment. Cylinders of RelyX Unicem or BisCem (n = 6) cement were build-up on the dentin surfaces and tested to determine shear strength. The results were analyzed using two-way ANOVA and Tukey's test (5%). While neither dentin pretreatment improved the bond strength for RelyX Unicem, deproteinization treatments resulted in greater bond strength in BisCem specimens while acid etching alone did not improve the performance of the material

    Gene Expression Profiling and Molecular Characterization of Antimony Resistance in Leishmania amazonensis

    Get PDF
    Leishmania are unicellular microorganisms that can be transmitted to humans by the bite of sandflies. They cause a spectrum of diseases called leishmaniasis, which are classified as neglected tropical diseases by the World Health Organization. The treatment of leishmaniasis is based on the administration of antimony-containing drugs. These drugs have been used since 1947 and still constitute the mainstay for leishmaniasis treatment in several countries. One of the problems with these compounds is the emergence of resistance. Our work seeks to understand how these parasites become resistant to the drug. We studied antimony-resistant Leishmania amazonensis mutants. We analyzed gene expression at the whole genome level in antimony-resistant parasites and identified mechanisms used by Leishmania for resistance. This work could help us in developing new strategies for treatment in endemic countries where people are unresponsive to antimony-based chemotherapy. The identification of common mechanisms among different species of resistant parasites may also contribute to the development of diagnostic kits to identify and monitor the spread of resistance
    corecore