11 research outputs found

    Développement d'un instrument plasmonique bimodal couplant SPRI et SERS pour la détection et l'identification de molécules biologiques

    No full text
    Surface Plasmon Resonance Imaging (SPRI) is a powerful technique to study molecular interactions providing a real time, label free and high throughput analysis. The transduction of an interaction between complementary molecules into an optical signal is based on the perturbation of a plasmonic evanescent wave supported by a thin metallic film.However, despite its direct and label free assets, the specificity of SPR measurements is only guaranteed by the probe molecules grafted on the metallic surface and therefore by the quality of the surface chemistry. This limitation becomes an issue when addressing major health concerns relying on the detection of trace molecules. In particular, new systems are required to help early diagnosis and the control of food contaminants.In view of improving measurement’s specificity, this work reports the development of a bimodal instrument coupling SPRI, allowing the quantification of captured molecules, with Surface Enhanced Raman Spectroscopy (SERS), adding the precise identification of the molecules by measuring their spectroscopic fingerprint. This PhD is part of an ANR project bringing together academic and industrial partners.This manuscript focuses on the development of the optical instrument combining the two detection systems in a unique prototype. SPRI measurements are performed in the Kretschmann configuration while SERS analysis is implemented from the top, in solution, through a glass window. Nanostructured substrates have been designed and realized to allow the simultaneous experiment.The optical system is described, characterized and validated on the model case of a DNA hybridization. These first results prove the capabilities of the bimodal instrument in the perspective of more complex biological applications.L’imagerie par RĂ©sonance des Plasmons de Surface (SPRI) est une technique d’analyse d’interactions molĂ©culaires prĂ©sentant de nombreux avantages. Elle peut ĂȘtre appliquĂ©e en temps rĂ©el et sans marquage, pour Ă©tudier un grand nombre d’interactions simultanĂ©ment sur un mĂȘme Ă©chantillon. La transduction d’un Ă©vĂ©nement d‘interaction entre deux molĂ©cules complĂ©mentaires en un signal optique, repose sur la perturbation de l’onde plasmonique Ă©vanescente crĂ©Ă©e Ă  la surface d’un film mĂ©tallique mince.Toutefois, bien que la mesure SPR soit directe et sans marquage, sa spĂ©cificitĂ© repose entiĂšrement sur celle des molĂ©cules sondes dĂ©posĂ©es Ă  la surface de la puce et donc sur la chimie ayant servi Ă  les immobiliser. Cette limitation devient problĂ©matique pour adresser les grands enjeux de santĂ© actuels, liĂ©s Ă  la dĂ©tection de molĂ©cules Ă  l’état de traces. En particulier, de nouveaux systĂšmes d’analyse plus sensibles sont requis pour pouvoir diagnostiquer le cancer au plus tĂŽt, ou encore dĂ©tecter la prĂ©sence de contaminants agro-alimentaires en faible concentration.Dans cette perspective d’amĂ©lioration de la spĂ©cificitĂ© de dĂ©tection, ce travail porte sur la mise au point d’un instrument bimodal couplant la SPRI, capable de quantifier la capture de molĂ©cules cibles, Ă  la SpectromĂ©trie Raman ExaltĂ©e de Surface (SERS), qui permet d’identifier la nature des molĂ©cules capturĂ©es en dĂ©terminant leur « empreinte » molĂ©culaire. Cette thĂšse s’inscrit dans un projet ANR regroupant un consortium de partenaires acadĂ©miques et un industriel.Ce document se concentre sur le dĂ©veloppement de l’instrument optique combinant les deux systĂšmes de dĂ©tection en un seul prototype. La mesure SPRI est rĂ©alisĂ©e en configuration Kretschmann, tandis que l’analyse SERS s’effectue par le dessus, en milieu liquide, Ă  travers un hublot. Ces deux mesures simultanĂ©es sont rendues possibles grĂące Ă  la mise au point d’un substrat mĂ©tallique nanostructurĂ©. Une caractĂ©risation dĂ©taillĂ©e du systĂšme optique est tout d’abord prĂ©sentĂ©e, puis de premiers rĂ©sultats de validation de la mesure bimodale sur un cas modĂšle d’interaction biomolĂ©culaire ADN sont dĂ©montrĂ©s. Ces expĂ©riences prometteuses confirment le fonctionnement de l’instrument bimodal dans la perspective d’applications d’intĂ©rĂȘt biologique

    Development of a bimodal plasmonic instrument coupling SPRI and SERS for the detection and identification of biological molecules

    No full text
    L’imagerie par RĂ©sonance des Plasmons de Surface (SPRI) est une technique d’analyse d’interactions molĂ©culaires prĂ©sentant de nombreux avantages. Elle peut ĂȘtre appliquĂ©e en temps rĂ©el et sans marquage, pour Ă©tudier un grand nombre d’interactions simultanĂ©ment sur un mĂȘme Ă©chantillon. La transduction d’un Ă©vĂ©nement d‘interaction entre deux molĂ©cules complĂ©mentaires en un signal optique, repose sur la perturbation de l’onde plasmonique Ă©vanescente crĂ©Ă©e Ă  la surface d’un film mĂ©tallique mince.Toutefois, bien que la mesure SPR soit directe et sans marquage, sa spĂ©cificitĂ© repose entiĂšrement sur celle des molĂ©cules sondes dĂ©posĂ©es Ă  la surface de la puce et donc sur la chimie ayant servi Ă  les immobiliser. Cette limitation devient problĂ©matique pour adresser les grands enjeux de santĂ© actuels, liĂ©s Ă  la dĂ©tection de molĂ©cules Ă  l’état de traces. En particulier, de nouveaux systĂšmes d’analyse plus sensibles sont requis pour pouvoir diagnostiquer le cancer au plus tĂŽt, ou encore dĂ©tecter la prĂ©sence de contaminants agro-alimentaires en faible concentration.Dans cette perspective d’amĂ©lioration de la spĂ©cificitĂ© de dĂ©tection, ce travail porte sur la mise au point d’un instrument bimodal couplant la SPRI, capable de quantifier la capture de molĂ©cules cibles, Ă  la SpectromĂ©trie Raman ExaltĂ©e de Surface (SERS), qui permet d’identifier la nature des molĂ©cules capturĂ©es en dĂ©terminant leur « empreinte » molĂ©culaire. Cette thĂšse s’inscrit dans un projet ANR regroupant un consortium de partenaires acadĂ©miques et un industriel.Ce document se concentre sur le dĂ©veloppement de l’instrument optique combinant les deux systĂšmes de dĂ©tection en un seul prototype. La mesure SPRI est rĂ©alisĂ©e en configuration Kretschmann, tandis que l’analyse SERS s’effectue par le dessus, en milieu liquide, Ă  travers un hublot. Ces deux mesures simultanĂ©es sont rendues possibles grĂące Ă  la mise au point d’un substrat mĂ©tallique nanostructurĂ©. Une caractĂ©risation dĂ©taillĂ©e du systĂšme optique est tout d’abord prĂ©sentĂ©e, puis de premiers rĂ©sultats de validation de la mesure bimodale sur un cas modĂšle d’interaction biomolĂ©culaire ADN sont dĂ©montrĂ©s. Ces expĂ©riences prometteuses confirment le fonctionnement de l’instrument bimodal dans la perspective d’applications d’intĂ©rĂȘt biologique.Surface Plasmon Resonance Imaging (SPRI) is a powerful technique to study molecular interactions providing a real time, label free and high throughput analysis. The transduction of an interaction between complementary molecules into an optical signal is based on the perturbation of a plasmonic evanescent wave supported by a thin metallic film.However, despite its direct and label free assets, the specificity of SPR measurements is only guaranteed by the probe molecules grafted on the metallic surface and therefore by the quality of the surface chemistry. This limitation becomes an issue when addressing major health concerns relying on the detection of trace molecules. In particular, new systems are required to help early diagnosis and the control of food contaminants.In view of improving measurement’s specificity, this work reports the development of a bimodal instrument coupling SPRI, allowing the quantification of captured molecules, with Surface Enhanced Raman Spectroscopy (SERS), adding the precise identification of the molecules by measuring their spectroscopic fingerprint. This PhD is part of an ANR project bringing together academic and industrial partners.This manuscript focuses on the development of the optical instrument combining the two detection systems in a unique prototype. SPRI measurements are performed in the Kretschmann configuration while SERS analysis is implemented from the top, in solution, through a glass window. Nanostructured substrates have been designed and realized to allow the simultaneous experiment.The optical system is described, characterized and validated on the model case of a DNA hybridization. These first results prove the capabilities of the bimodal instrument in the perspective of more complex biological applications

    Hybrid Plasmonic Mode by Resonant Coupling of Localized Plasmons to Propagating Plasmons in a Kretschmann Configuration

    No full text
    Metal nanoparticles have the ability to strongly enhance the local electromagnetic field in their vicinity. Such enhancement is crucial for biomolecular detection and is used by techniques such as surface plasmon resonance detection or surface-enhanced Raman scattering. For these processes, the sensitivity strongly depends on the electromagnetic field intensity confined around such nanoparticles. In this article, we have numerically studied an array of metallic nanocylinders, which can sustain localized surface plasmons (LSP). However, the excitation wavelengths of the LSP are not tunable due to their limited dispersion. We have demonstrated a plasmonic mode, the hybrid lattice plasmon (HLP), which is excited in such a periodic array by adding a uniform thin metallic film below it. This mode is a result of a harmonic coupling of the propagating surface plasmons present in such a metallic film with the Bragg waves of the array. It shows a strong confinement of the electromagnetic field intensity around the nanocylinders, similar to the LSP, but the dispersion of this HLP mode is, however, similar to that of the propagating plasmons and, thus, can be tuned over a wide range of excitation wavelengths. The structure was fabricated using electron beam lithography and characterized by a surface plasmon resonance setup. These experimental results show that the HLP mode can be excited in a classical Kretschmann configuration with a dispersion similar to the prediction of numerical simulations
    corecore