11 research outputs found

    A new era for cities with fog computing

    No full text
    In this article, the authors dissect the technical challenges that cities face when implementing smart city plans and outlines the design principles and lessons learned after they carried out a flagship initiative on fog computing in Barcelona. In particular, they analyze what they call the Quadruple Silo (QS) problem -- that is, four categories of silos that cities confront after deploying commercially available solutions. Those silo categories are: physical (hardware) silos, data silos, and service management silos, and the implications of the three silos in administrative silos. The authors show how their converged cloud/fog paradigm not only helps solve the QS problem, but also meets the requirements of a growing number of decentralized services -- an area in which traditional cloud models fall short. The article exposes cases in which fog computing is a must, and shows that the reasons for deploying fog are centered much more on operational requirements than on performance issues related to the cloud

    Automated Flow Synthesis of Tumor Neoantigen Peptides for Personalized Immunotherapy

    No full text
    High-throughput genome sequencing and computation have enabled rapid identification of targets for personalized medicine, including cancer vaccines. Synthetic peptides are an established mode of cancer vaccine delivery, but generating the peptides for each patient in a rapid and affordable fashion remains difficult. High-throughput peptide synthesis technology is therefore urgently needed for patient-specific cancer vaccines to succeed in the clinic. Previously, we developed automated flow peptide synthesis technology that greatly accelerates the production of synthetic peptides. Herein, we show that this technology permits the synthesis of high-quality peptides for personalized medicine. Automated flow synthesis produces 30-mer peptides in less than 35 minutes and 15- to 16-mer peptides in less than 20 minutes. The purity of these peptides is comparable with or higher than the purity of peptides produced by other methods. This work illustrates how automated flow synthesis technology can enable customized peptide therapies by accelerating synthesis and increasing purity. We envision that implementing this technology in clinical settings will greatly increase capacity to generate clinical-grade peptides on demand, which is a key step in reaching the full potential of personalized vaccines for the treatment of cancer and other diseases.National Science Foundation (Grant 1122374)National Institutes of Health (Grants R21-CA216772-01A1 and NCI-1RO1CA155010-02)National Cancer Institute (Grants R21 CA216772-01A1 and SPORE-2P50CA101942-11A1)NHLBI (Grant 5R01HL103532-03

    Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma

    No full text
    Personal neoantigen vaccines have been envisioned as an effective approach to induce, amplify, and diversify antitumor T cell responses. To define the long-term effects of such a vaccine, we evaluated the clinical outcome and circulating immune responses of 8 patients with surgically resected stage IIIB/C or IVM1a/b melanoma, at a median of almost 4 years after treatment with NeoVax, a long peptide vaccine targeting up to 20 personal neoantigens per patient. (NCT01970358). All patients were alive, 6 without evidence of active disease. We observed long-term persistence of neoantigen-specific T cell responses following vaccination, with ex vivo detection of neoantigen-specific T cells exhibiting a memory phenotype. We also found diversification of neoantigen-specific T cell clones over time, with emergence of multiple T cell receptor clonotypes exhibiting distinct functional avidities. Furthermore, we detected evidence of tumor infiltration by neoantigen-specific T cell clones after vaccination and epitope spreading, suggesting on-target vaccine-induced tumor cell killing. Personal neoantigen peptide vaccines thus induce T cell responses that persist over years and broaden the spectrum of tumor-specific cytotoxicity in patients with melanoma

    Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial

    No full text
    Neoantigens, which are derived from tumour-specific protein-coding mutations, are exempt from central tolerance, can generate robust immune responses1,2 and can function as bona fide antigens that facilitate tumour rejection3. Here we demonstrate that a strategy that uses multi-epitope, personalized neoantigen vaccination, which has previously been tested in patients with high-risk melanoma4–6, is feasible for tumours such as glioblastoma, which typically have a relatively low mutation load1,7 and an immunologically ‘cold’ tumour microenvironment8. We used personalized neoantigen-targeting vaccines to immunize patients newly diagnosed with glioblastoma following surgical resection and conventional radiotherapy in a phase I/Ib study. Patients who did not receive dexamethasone—a highly potent corticosteroid that is frequently prescribed to treat cerebral oedema in patients with glioblastoma—generated circulating polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses that were enriched in a memory phenotype and showed an increase in the number of tumour-infiltrating T cells. Using single-cell T cell receptor analysis, we provide evidence that neoantigen-specific T cells from the peripheral blood can migrate into an intracranial glioblastoma tumour. Neoantigen-targeting vaccines thus have the potential to favourably alter the immune milieu of glioblastoma

    Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial

    No full text
    Neoantigens, which are derived from tumour-specific protein-coding mutations, are exempt from central tolerance, can generate robust immune responses1,2 and can function as bona fide antigens that facilitate tumour rejection3. Here we demonstrate that a strategy that uses multi-epitope, personalized neoantigen vaccination, which has previously been tested in patients with high-risk melanoma4–6, is feasible for tumours such as glioblastoma, which typically have a relatively low mutation load1,7 and an immunologically ‘cold’ tumour microenvironment8. We used personalized neoantigen-targeting vaccines to immunize patients newly diagnosed with glioblastoma following surgical resection and conventional radiotherapy in a phase I/Ib study. Patients who did not receive dexamethasone—a highly potent corticosteroid that is frequently prescribed to treat cerebral oedema in patients with glioblastoma—generated circulating polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses that were enriched in a memory phenotype and showed an increase in the number of tumour-infiltrating T cells. Using single-cell T cell receptor analysis, we provide evidence that neoantigen-specific T cells from the peripheral blood can migrate into an intracranial glioblastoma tumour. Neoantigen-targeting vaccines thus have the potential to favourably alter the immune milieu of glioblastoma
    corecore