41 research outputs found

    From Lab to Field: Role of Humic Substances Under Open-Field and Greenhouse Conditions as Biostimulant and Biocontrol Agent

    Get PDF
    The demand for biostimulants has been growing at an annual rate of 10 and 12.4% in Europe and Northern America, respectively. The beneficial effects of humic substances (HS) as biostimulants of plant growth have been well-known since the 1980s, and they can be supportive to a circular economy if they are extracted from different renewable resources of organic matter including harvest residues, wastewater, sewage sludge, and manure. This paper presents an overview of the scientific outputs on application methods of HS in different conditions. Firstly, the functionality of HS in the primary and secondary metabolism under stressed and non-stressed cropping conditions is discussed along with crop protection against pathogens. Secondly, the advantages and limitations of five different types of HS application under open-fields and greenhouse conditions are described. Key factors, such as the chemical structure of HS, application method, optimal rate, and field circumstances, play a crucial role in enhancing plant growth by HS treatment as a biostimulant. If we can get a better grip on these factors, HS has the potential to become a part of circular agriculture.</p

    Recobrimento de sementes de milho com ácidos húmicos e bactérias diazotróficas endofíticas

    Get PDF
    The objective of this work was to evaluate the effect of seed coating of maize with humic acid (HA), endophytic diazotrophic bacteria, and the combination of both, on plant growth stimulation and bacteria population establishment in roots of inoculated plant host. The addition of HA, bacteria, and the combined use of bacteria and HA stimulated plant growth. Humic acids used in the coated seed formulation show diminished capacity for stimulation of root growth compared with its use in solution. Seed coat is an option for inoculation of endophytic diazotrophic bacteria like Herbaspirillum seropedicae (Z67).O objetivo deste trabalho foi avaliar o efeito do recobrimento de sementes de milho com ácidos húmicos (AH), bactérias diazotróficas endofíticas e o uso em conjunto de AH e bactérias diazotróficas endofíticas, na estimulação do crescimento vegetal e na população de bactérias estabelecidas na planta hospedeira. A adição de AH, bactérias e o uso em conjunto estimularam o crescimento vegetal. Os AH utilizados no recobrimento de sementes de milho têm menor capacidade de estimular o crescimento radicular, em comparação ao uso em solução. O recobrimento de sementes é uma opção de inoculação de bactérias diazotróficas endofíticas da espécie Herbaspirillum seropedicae (Z67)

    Interaction between humic substances and plant hormones for phosphorous acquisition

    Get PDF
    Phosphorus (P) deficiency is a major constraint in highly weathered tropical soils. Although phosphorous rock reserves may last for several hundred years, there exists an urgent need to research efficient P management for sustainable agriculture. Plant hormones play an important role in regulating plant growth, development, and reproduction. Humic substances (HS) are not only considered an essential component of soil organic carbon (SOC), but also well known as a biostimulant which can perform phytohormone-like activities to induce nutrient uptake. This review paper presents an overview of the scientific outputs in the relationship between HS and plant hormones. Special attention will be paid to the interaction between HS and plant hormones for nutrient uptake under P-deficient conditions.</p

    The Free-Living Stage Growth Conditions of the Endophytic Fungus Serendipita indica May Regulate Its Potential as Plant Growth Promoting Microbe

    Get PDF
    Serendipita indica (former Piriformospora indica) is a non-obligate endophytic fungus and generally a plant growth and defence promoter with high potential to be used in agriculture. However, S. indica may switch from biotrophy to saprotrophy losing its plant growth promoting traits. Our aim was to understand if the free-living stage growth conditions (namely C availability) regulate S. indica’s phenotype, and its potential as plant-growth-promoting-microbe (PGPM). We grew S. indica in its free-living stage under increasing C availabilities (2–20 g L–1 of glucose or sucrose). We first characterised the effect of C availability during free-living stage growth on fungal phenotype: colonies growth and physiology (plasma membrane proton pumps, stable isotopic signatures, and potential extracellular decomposing enzymes). The effect of the C availability during the free-living stage of the PGPM was evaluated on wheat. We observed that C availability during the free-living stage regulated S. indica’s growth, ultrastructure and physiology, resulting in two distinct colony phenotypes: compact and explorer. The compact phenotype developed at low C, used peptone as the major C and N source, and displayed higher decomposing potential for C providing substrates; while the explorer phenotype developed at high C, used glucose and sucrose as major C sources and casein and yeast extract as major N sources, and displayed higher decomposing potential for N and P providing substrates. The C availability, or the C/N ratio, during the free-living stage left a legacy to the symbiosis stage, regulating S. indica’s potential to promote plant growth: wheat growth promotion by the explorer phenotype was ± 40% higher than that by the compact phenotype. Our study highlights the importance of considering microbial ecology in designing PGPM/biofertilizers. Further studies are needed to test the phenotypes under more extreme conditions, and to understand if the in vitro acquired characteristics persist under field conditions.info:eu-repo/semantics/publishedVersio

    Humic acids bioactivity: effects on root development and on the plasma membrane proton pump

    Get PDF
    A bioatividade de ácidos húmicos (AH) isolados de lodo da estação de tratamento de esgoto (AHL) e de vermicomposto (AHV) foi avaliada pela ação dessas substâncias sobre o transporte de prótons através da membrana plasmática de células de raízes de café e milho e sua relação com o desenvolvimento dessas espécies. Houve estímulo da área superficial radicular em ambas as espécies cultivadas com ambos AH, mostrando uma concentração ótima em torno de 40 mg L-1. Nessa condição, os tratamentos com AHL e AHV estimularam a H+-ATPase de membrana plasmática em plântulas de café e milho. Os AHL foram mais efetivos na promoção desses efeitos do que os AHV. A modificação do perfil cromatográfico dos AH em solução antes e após o cultivo das plântulas revelou que a interação planta-AH promoveu uma redistribuição das massas moleculares dessas substâncias, sugerindo uma dinâmica de mobilização de subunidades funcionais dos AH por exsudatos das raízes. A análise estrutural dos AH detectou a presença de grupamentos de auxina. A análise comparativa da ação desses dois AH sobre as espécies representantes de plantas monocotiledôneas (milho) e dicotiledôneas (café) apontam para a ativação da H+-ATPase de plasmalema como possível marcador metabólico de bioatividade dos ácidos húmicosThe bioactivity of humic acids (HA) isolated from sludge of the station of sewer treatment (HAL) and from vermicompost (HAV) was evaluated through the action of those substances on primary transport of protons of the plasma membrane of coffee and corn root cells and its relationship with the development of those species. A stimulation in the superficial area of roots was observed for both species cultivated with both humic acids, exhibiting an optimum concentration, about 40 mg L-1 of HA. In this condition the treatment with HAL and HAV stimulated the plasma membrane H+-ATPase of corn and coffee roots. HAL were more effective to promote those effects than HAV. The modification of the chromatographic profile of the HA in solution before and after the cultivation of the seedlings revealed that the interaction plant-HA promoted a rearrangement of the average molecular weight of those substances suggesting a dynamic mobilization of bioactive subunits of the HA by plant exudates. The structural analysis of the HA has detected the presence of auxin groups. A comparative analysis of the action of those HA on the monocotyledonous (corn) and dicotyledonous (coffee) plants indicates to the activation of plasmallema H+-ATPase as a possible metabolic marker for bioactivity of humic acids
    corecore