1,721 research outputs found

    Transient Absorption and Raman Spectroscopies in Organic Electronics

    Get PDF
    Raman spectroscopy has proved to be a very valuable tool for characterization in a large number of research fields, both biological, chemical and material sciences.[1] In the last decades, organic electronics has broken out as a real alternative to conventional electronics, based on inorganic materials. However, in order to advance significantly in this field of research is paramount the full characterization of electronic devices, going from the individual molecule to the system as a whole. Moreover, the study of photophysical and photochemical processes crosses the interest of many fields of research in physics, chemistry and biology. Among the experimental approaches developed for this purpose, the advent of ultrafast transient absorption spectroscopy has become a powerful and widely used method.[2,3] This pump-probe technique is a popular means of studying photophysics, because of its versatile time resolution and its ease of comparison with ground-state absorption spectra. In this communication, I will present the basic principles of transient absorption spectroscopy, along with some examples where its combination with Raman spectroscopy allows the great characterization of organic molecules with potential applications in organic electronics.[4,5] References [1] H. Schulz, M. Baranska, R. Baranski. Biopolymers 2005, 77, 212 - 221. [2] U. Megerle, I. Pugliesi, C. Schriever, C.F. Sailer, E. Riedle. Appl. Phys. B, 2009, 96, 215 - 231. [3] R. Berera, R. van Grondelle, J.T.M. Kennis. Photosynth. Res. 2009, 101, 105 - 118. [4] E. Anaya-Plaza, M. Moreno Oliva, A. Kunzmann, C. Romero-Nieto, R.D. Costa, A. de la Escosura, D.M. Guldi, T. Torres. Adv. Funct. Mater. 2015, 25, 7418 - 7427. [5] F. Liu, G.L. Espejo, S. Qiu, M. Moreno Oliva, J. Pina, J.S. Seixas de Melo, J. Casado, X. Zhu. J. Am. Chem. Soc. 2015, 137, 10357 - 10366.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Ultrafast transient absorption spectroscopy: principles and applications

    Get PDF
    The study of photophysical and photochemical processes crosses the interest of many fields of research in physics, chemistry and biology. In particular, the photophysical and photochemical reactions, after light absorption by a photosynthetic pigment-protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. Among the experimental approaches developed for this purpose, the advent of ultrafast transient absorption spectroscopy has become a powerful and widely used technique.[1,2] Focusing on the process of photosynthesis, it relies upon the efficient absorption and conversion of the radiant energy from the Sun. Chlorophylls and carotenoids are the main players in the process. Photosynthetic pigments are typically arranged in a highly organized fashion to constitute antennas and reaction centers, supramolecular devices where light harvesting and charge separation take place. The very early steps in the photosynthetic process take place after the absorption of a photon by an antenna system, which harvests light and eventually delivers it to the reaction center. In order to compete with internal conversion, intersystem crossing, and fluorescence, which inevitably lead to energy loss, the energy and electron transfer processes that fix the excited-state energy in photosynthesis must be extremely fast. In order to investigate these events, ultrafast techniques down to a sub-100 fs resolution must be used. In this way, energy migration within the system as well as the formation of new chemical species such as charge-separated states can be tracked in real time. This can be achieved by making use of ultrafast transient absorption spectroscopy. The basic principles of this notable technique, instrumentation, and some recent applications to photosynthetic systems[3] will be described. Acknowledgements M. Moreno Oliva thanks the MINECO for a “Juan de la Cierva-Incorporación” research contract. References [1] U. Megerle, I. Pugliesi, C. Schriever, C.F. Sailer and E. Riedle, Appl. Phys. B, 96, 215 – 231 (2009). [2] R. Berera, R. van Grondelle and J.T.M. Kennis, Photosynth. Res., 101, 105 – 118 (2009). [3] T. Nikkonen, M. Moreno Oliva, A. Kahnt, M. Muuronen, J. Helaja and D.M. Guldi, Chem. Eur. J., 21, 590 – 600 (2015).Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Elaboración de rúbricas de evaluación y revisión del repositorio de Prácticas de Laboratorio del Área de Química

    Get PDF
    Las asignaturas del área de Química que contienen una parte importante de Prácticas de Laboratorio, como las que se pueden encontrar fácilmente en los Grados de Ciencias Experimentales, son el foco de atención de esta experiencia educativa realizada gracias a un Proyecto de Innovación Educativa (PIE17-156). Dichas prácticas son por naturaleza difíciles de evaluar de forma individualizada y suelen poseer una limitación de material didáctico. La presente experiencia ha estado orientada hacia la creación de rúbricas para la evaluación del alumnado y hacia la mejora del repositorio de Manuales Metodológicos de Prácticas de Laboratorio creado durante el anterior PIE (PIE15-154). Estas rúbricas facilitarán la evaluación formativa de las prácticas desde los cursos más básicos (experiencias más generales), hasta cursos superiores del grado en Química, e incluso Máster (prácticas más específicas de cada materia). De este modo se asegura un proceso de evaluación continuo.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Direct healthcare costs of diabetes mellitus patients in Spain

    Get PDF
    Objectives. To estimate the healthcare resources spent by diabetic patients in Spain during the year 2002. Methods. The present work is a cost-of-illness study. Direct healthcare costs were estimated using rates of DM, based on primary and secondary sources of information. A range of prevalence from 5% to 6% of the adult population was determined. The total cost was composed of six items: insulin and oral hypoglycemic agents; other drugs; disposable and consumable goods (glucose test strips, needles and syringes); hospitalization; primary care visits; visits to specialists. Results. The estimated direct cost of DM during the year 2002 ranges from (euros)2.4 billion to (euros)2.67 billion. Hospital costs had the highest weight ((euros)933 million) in the total, followed by non-insulin, non-hypoglycemic-agent drugs ((euros)777-932 million). Much lower are the costs of insulin and oral hypoglycemic agents ((euros)311 million), primary care visits ((euros)181-272 million), specialized visits ((euros)127-145 million) and disposable elements ((euros)70-81 million). The per-diabetic, per-year cost ranges between (euros)1,290 to 1,476. Discussion. Despite our rather conservative approach to the issue, our findings demonstrate the high direct healthcare costs of diabetic patients. Likewise, they illustrate the magnitude of the costs of treatment of DM-related complications

    Value Chain: From iDMU to Shopfloor Documentation of Aeronautical Assemblies

    Get PDF
    Competition in the aerospace manufacturing companies has led them to continuously improve the efficiency of their processes from the conceptual phase to the start of production and during operation phase, providing services to clients. PLM (Product Lifecycle Management) is an end-to-end business solution which aims to provide an environment of information about the product and related processes available to the whole enterprise throughout the product’s lifecycle. Airbus designs and industrializes aircrafts using Concurrent Engineering methods since decades. The introduction of new PLM methods, procedures and tools, and the need to improve processes efficiency and reduce time-to-market, led Airbus to pursue the Collaborative Engineering method. Processes efficiency is also impacted by the variety of systems existing within Airbus. Interoperability rises as a solution to eliminate inefficiencies due to information exchange and transformations and it also provides a way to discover and reuse existing information. The ARIADNE project (Value chain: from iDMU to shopfloor documentation of aeronautical assemblies) was launched to support the industrialization process of an aerostructure by implementing the industrial Digital Mock-Up (iDMU) concept in a Collaborative Engineering framework. Interoperability becomes an important research workpackage in ARIADNE to exploit and reuse the information contained in the iDMU and to create the shop floor documentation. This paper presents the context, the conceptual approach, the methodology adopted and preliminary results of the project

    The case of a southern European glacier which survived Roman and medieval warm periods but is disappearing under recent warming

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UA

    Aportaciones del Proyecto Votescript a los Esquemas Tradicionales de Voto Electrónico.

    Get PDF
    This paper hallmarks the most relevant contributions carried out by the authors in the VOTESCRIPT project (TIC2000-1630-C02). The main goal of this project was the analysis, definition and implementation of a system which copes with every phases and elements existing in a process of electronic voting using computer networks. A summary of the main criticisms of electronic voting is presented to disclose that the most relevant voting schemes only take into account a technological perspective, just trying to imitate the conventional voting schemes. Nevertheless in these proposals important aspects such individual and global verification are not properly undertaken. The paper includes the proposed solutions of the project to solve these mentioned problems

    The XDSPRES CL-based package for reducing OSIRIS cross-dispersed spectra

    Full text link
    We present a description of the CL-based package XDSPRES, which aims at being a complete reducing facility for cross-dispersed spectra taken with the Ohio State Infrared Imager/Spectrometer, as installed at the SOAR telescope. This instrument provides spectra in the range between 1.2um and 2.35um in a single exposure, with resolving power of R ~ 1200. XDSPRES consists of two tasks, namely xdflat and doosiris. The former is a completely automated code for preparing normalized flat field images from raw flat field exposures. Doosiris was designed to be a complete reduction pipeline, requiring a minimum of user interaction. General steps towards a fully reduced spectrum are explained, as well as the approach adopted by our code. The software is available to the community through the web site http://www.if.ufrgs.br/~ruschel/software.Comment: 14 pages, 10 figure
    corecore