14 research outputs found

    Probing of nanocontacts inside a transmission electron microscope

    Get PDF
    In the past twenty years, powerful tools such as atomic force microscopy have made it possible to accurately investigate the phenomena of friction and wear, down to the nanometer scale. Readers of this book will become familiar with the concepts and techniques of nanotribology, explained by an international team of scientists and engineers, actively involved and with long experience in this field. Edited by two pioneers in the field, 'Fundamentals of Frictions and Wear at the Nanoscale' is suitable both as first introduction to this fascinating subject, and also as a reference for researchers wishing to improve their knowledge of nanotribology and to keep up with the latest results in this field

    ÉCLAIRE - Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosytems - second periodic report 01/04/2013 to 30/09/2014

    Get PDF

    ECLAIRE: Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems. Project final report

    Get PDF
    The central goal of ECLAIRE is to assess how climate change will alter the extent to which air pollutants threaten terrestrial ecosystems. Particular attention has been given to nitrogen compounds, especially nitrogen oxides (NOx) and ammonia (NH3), as well as Biogenic Volatile Organic Compounds (BVOCs) in relation to tropospheric ozone (O3) formation, including their interactions with aerosol components. ECLAIRE has combined a broad program of field and laboratory experimentation and modelling of pollution fluxes and ecosystem impacts, advancing both mechanistic understanding and providing support to European policy makers. The central finding of ECLAIRE is that future climate change is expected to worsen the threat of air pollutants on Europe’s ecosystems. Firstly, climate warming is expected to increase the emissions of many trace gases, such as agricultural NH3, the soil component of NOx emissions and key BVOCs. Experimental data and numerical models show how these effects will tend to increase atmospheric N deposition in future. By contrast, the net effect on tropospheric O3 is less clear. This is because parallel increases in atmospheric CO2 concentrations will offset the temperature-driven increase for some BVOCs, such as isoprene. By contrast, there is currently insufficient evidence to be confident that CO2 will offset anticipated climate increases in monoterpene emissions. Secondly, climate warming is found to be likely to increase the vulnerability of ecosystems towards air pollutant exposure or atmospheric deposition. Such effects may occur as a consequence of combined perturbation, as well as through specific interactions, such as between drought, O3, N and aerosol exposure. These combined effects of climate change are expected to offset part of the benefit of current emissions control policies. Unless decisive mitigation actions are taken, it is anticipated that ongoing climate warming will increase agricultural and other biogenic emissions, posing a challenge for national emissions ceilings and air quality objectives related to nitrogen and ozone pollution. The O3 effects will be further worsened if progress is not made to curb increases in methane (CH4) emissions in the northern hemisphere. Other key findings of ECLAIRE are that: 1) N deposition and O3 have adverse synergistic effects. Exposure to ambient O3 concentrations was shown to reduce the Nitrogen Use Efficiency of plants, both decreasing agricultural production and posing an increased risk of other forms of nitrogen pollution, such as nitrate leaching (NO3-) and the greenhouse gas nitrous oxide (N2O); 2) within-canopy dynamics for volatile aerosol can increase dry deposition and shorten atmospheric lifetimes; 3) ambient aerosol levels reduce the ability of plants to conserve water under drought conditions; 4) low-resolution mapping studies tend to underestimate the extent of local critical loads exceedance; 5) new dose-response functions can be used to improve the assessment of costs, including estimation of the value of damage due to air pollution effects on ecosystems, 6) scenarios can be constructed that combine technical mitigation measures with dietary change options (reducing livestock products in food down to recommended levels for health criteria), with the balance between the two strategies being a matter for future societal discussion. ECLAIRE has supported the revision process for the National Emissions Ceilings Directive and will continue to deliver scientific underpinning into the future for the UNECE Convention on Long-range Transboundary Air Pollution

    ECLAIRE third periodic report

    Get PDF
    The ÉCLAIRE project (Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems) is a four year (2011-2015) project funded by the EU's Seventh Framework Programme for Research and Technological Development (FP7)

    >

    No full text

    Probing of nanocontacts inside a transmission electron microscope

    No full text
    In the past twenty years, powerful tools such as atomic force microscopy have made it possible to accurately investigate the phenomena of friction and wear, down to the nanometer scale. Readers of this book will become familiar with the concepts and techniques of nanotribology, explained by an international team of scientists and engineers, actively involved and with long experience in this field. Edited by two pioneers in the field, \u27Fundamentals of Frictions and Wear at the Nanoscale\u27 is suitable both as first introduction to this fascinating subject, and also as a reference for researchers wishing to improve their knowledge of nanotribology and to keep up with the latest results in this field

    Spent graphite from end-of-life Li-ion batteries as a potential electrode for aluminium ion battery

    No full text
    Graphite is central in almost all commercial Li-ion batteries (LIBs) and possesses attractive physical and chemical properties such as good ionic conductivity and layered graphitic structure. In this communication, we have demonstrated the recycling of graphite from end-of-life LIBs and the re-purposing of the recovered material for positive electrodes in next-generation aluminium-ion-batteries (AIBs). The recovered graphite possesses enlarged interlayer spacing which is shown to effectively boost Al-ion insertion/de-insertion during the charge/discharge processes. Excellent Al-ion storage performance is achieved with the capacity reaching 124 mAh g−1 at 50 mA g−1. The material retained a capacity of 55 mAh g−1 even after the applied current was increased to 500 mA g−1, showing its capability to deliver high rate performance. The charge/discharge cycling further revealed that the graphite retains 81% of its initial capacity even after 6700 cycles at a high rate of 300 mA g−1. This excellent aluminium ion storage performance makes the recovered graphite a promising positive electrode material, providing a possible solution for the recycling of huge amounts of LIB scrap. At the same time, this material aids the development of alternative sustainable battery technology, as an alternative to LIBs

    An explorative study on respiratory health among operators working in polymer additive manufacturing

    No full text
    Additive manufacturing (AM), or 3D printing, is a growing industry involving a wide range of different techniques and materials. The potential toxicological effects of emissions produced in the process, involving both ultrafine particles and volatile organic compounds (VOCs), are unclear, and there are concerns regarding possible health implications among AM operators.The objective of this study was to screen the presence of respiratory health effects among people working with liquid, powdered, or filament plastic materials in AM. MethodsIn total, 18 subjects working with different additive manufacturing techniques and production of filament with polymer feedstock and 20 controls participated in the study. Study subjects filled out a questionnaire and underwent blood and urine sampling, spirometry, impulse oscillometry (IOS), exhaled NO test (FeNO), and collection of particles in exhaled air (PEx), and the exposure was assessed. Analysis of exhaled particles included lung surfactant components such as surfactant protein A (SP-A) and phosphatidylcholines. SP-A and albumin were determined using ELISA. Using reversed-phase liquid chromatography and targeted mass spectrometry, the relative abundance of 15 species of phosphatidylcholine (PC) was determined in exhaled particles. The results were evaluated by univariate and multivariate statistical analyses (principal component analysis). ResultsExposure and emission measurements in AM settings revealed a large variation in particle and VOC concentrations as well as the composition of VOCs, depending on the AM technique and feedstock. Levels of FeNO, IOS, and spirometry parameters were within clinical reference values for all AM operators. There was a difference in the relative abundance of saturated, notably dipalmitoylphosphatidylcholine (PC16:0_16:0), and unsaturated lung surfactant lipids in exhaled particles between controls and AM operators. ConclusionThere were no statistically significant differences between AM operators and controls for the different health examinations, which may be due to the low number of participants. However, the observed difference in the PC lipid profile in exhaled particles indicates a possible impact of the exposure and could be used as possible early biomarkers of adverse effects in the airways
    corecore