13 research outputs found

    Mediating Gesture in Theory and Practice

    Get PDF
    Editorial Article to the special issue "Mise en geste. Studies of Gesture in Cinema" (ed. by Ana Hedberg Olenina and Irina Schulzki) in journal "Apparatus. Film, Media and Digital Cultures in Central and Eastern Europe" 5 (2017). 1. Gesture as a Figure of Speech. About this Issue 2. Liberated Gestures: Theories of Bodily Statements beyond the Sign. 2.1. Sergei Eisenstein: The Underlying Gesture 2.2. In Eisenstein’s Footsteps: Yuri Tsivian’s Carpalistics and Pia Tikka’s Enactive Cinema 2.3. Béla Balázs: Physiognomy 2.4. Julia Kristeva: Anaphora 2.5. Mikhail Iampolski: Deformations 2.6. Oksana Bulgakowa: The Factory of Gestures 2.7. Giorgio Agamben: Pure Gesture 2.8. Vilém Flusser: The Gesture of Filming. 3. Gesturology of Revolution: Petr Pavlenskii’s Mise en geste

    Estimation of functional diversity and species traits from ecological monitoring data

    Get PDF
    The twin crises of climate change and biodiversity loss define a strong need for functional diversity monitoring. While the availability of high-quality ecological monitoring data is increasing, the quantification of functional diversity so far requires the identification of species traits, for which data are harder to obtain. However, the traits that are relevant for the ecological function of a species also shape its performance in the environment and hence, should be reflected indirectly in its spatiotemporal distribution. Thus, it may be possible to reconstruct these traits from a sufficiently extensive monitoring dataset. Here, we use diffusion maps, a deterministic and de facto parameter-free analysis method, to reconstruct a proxy representation of the species’ traits directly from monitoring data and use it to estimate functional diversity. We demonstrate this approach with both simulated data and real-world phytoplankton monitoring data from the Baltic Sea. We anticipate that wider application of this approach to existing data could greatly advance the analysis of changes in functional biodiversity

    Changes in phytoplankton communities along a north–south gradient in the Baltic Sea between 1990 and 2008

    Get PDF
    Evaluation of changes in Baltic Sea phytoplankton communities has been hampered by a lack of quantitative long-term data. We investigated changes in biomass of summer (June–September) phytoplankton over the last two decades (1990–2008) along a north–south gradient in the Baltic Sea. The areas were characterized by different temperature, salinity and nutrient conditions. Thirty taxonomic groups were selected for the statistical analysis. Increases in total phytoplankton, particularly cyanobacterial, biomass were observed in the Gulfs of Bothnia and Finland. In these two areas over the study period cyanobacteria also became abundant earlier in the season, and in the Curonian Lagoon Planktothrix agardhii replaced Aphanizomenon flos-aquae as the most abundant cyanobacterium. In general, water temperature was the most influential factor affecting the summer phytoplankton communities. Our data suggest that temperature increases resulting from climate change are likely to cause basin-specific changes in the phytoplankton communities, which in turn may affect overall ecosystem functioning in the Baltic Sea

    An Integrated Approach to Analysis of Phytoplankton Images

    Full text link

    Shape matters: the relationship between cell geometry and diversity in phytoplankton

    Get PDF
    Size and shape profoundly influence an organism’s ecophysiological performance and evolutionary fitness, suggesting a link between morphology and diversity. However, not much is known about how body shape is related to taxonomic richness, especially in microbes. Here we analyse global datasets of unicellular marine phytoplankton, a major group of primary producers with an exceptional diversity of cell sizes and shapes and, additionally, heterotrophic protists. Using two measures of cell shape elongation, we quantify taxonomic diversity as a function of cell size and shape. We find that cells of intermediate volume have the greatest shape variation, from oblate to extremely elongated forms, while small and large cells are mostly compact (e.g. spherical or cubic). Taxonomic diversity is strongly related to cell elongation and cell volume, together explaining up to 92% of total variance. Taxonomic diversity decays exponentially with cell elongation and displays a log-normal dependence on cell volume, peaking for intermediate-volume cells with compact shapes. These previously unreported broad patterns in phytoplankton diversity reveal selective pressures and ecophysiological constraints on the geometry of phytoplankton cells which may improve our understanding of marine ecology and the evolutionary rules of life

    An Integrated Approach to Analysis of Phytoplankton Images

    No full text
    The main objective of this paper is detection, recognition, and abundance estimation of objects representing the Prorocentrum minimum (Pavillard) Schiller (P. minimum) species in phytoplankton images. The species is known to cause harmful blooms in many estuarine and coastal environments. The proposed technique for solving the task exploits images of two types, namely, obtained using light and fluorescence microscopy. Various image preprocessing techniques are applied to extract a variety of features characterizing P. minimum cells and cell contours. Relevant feature subsets are then selected and used in support vector machine (SVM) as well as random forest (RF) classifiers to distinguish between P. minimum cells and other objects. To improve the cell abundance estimation accuracy, classification results are corrected based on probabilities of interclass misclassification. The developed algorithms were tested using 158 phytoplankton images. There were 920 P. minimum cells in the images in total. The algorithms detected 98.1% of P. minimum cells present in the images and correctly classified 98.09% of all detected objects. The classification accuracy of detected P. minimum cells was equal to 98.9%, yielding a 97.0% overall recognition rate of P. minimum cells. The feature set used in this work has shown considerable tolerance to out-of-focus distortions. Tests of the system by phytoplankton experts in the cell abundance estimation task of P. minimum species have shown that its performance is comparable or even better than performance of phytoplankton experts exhibited in manual counting of artificial microparticles, similar to P. minimum cells. The automated system detected and correctly recognized 308 (91.1%) of 338 P. minimum cells found by experts in 65 phytoplankton images taken from new phytoplankton samples and erroneously assigned to the P. minimum class 3% of other objects. Note that, due to large variations of texture and size of P. minimum cells as well as- background, the task performed by the system was more complex than that performed by the experts when counting artificial microparticles similar to P. minimum cells.This work was supported by the Research Council of Lithuania under Grant LEK-09/2012.</p

    Detecting P. minimum cells in phytoplankton images

    No full text
    This article is concerned with detection of objects in phytoplankton images, especially objects representing one invasive species-Prorocentrum minimum (P. minimum), - which is known to cause harmful blooms in many estuarine and coastal environments. A new technique, combining phase congruency-based detection of circular objects, stochastic optimization, and image segmentation was developed for solving the task. The developed algorithms were tested using 114 images of 1280x960 pixels size recorded by a colour camera. There were 2088 objects representing P. minimum cells in the images in total. The algorithms were able to detect 93,25% of the objects. The results are rather encouraging and may be applied for future development of the algorithms aimed at automated classification of objects into classes representing different phytoplankton species

    Changes in phytoplankton communities along a north-south gradient in the Baltic Sea between 1990 and 2008

    No full text
    Evaluation of changes in Baltic Sea phytoplankton communities has been hampered by a lack of quantitative long-term data. We investigated changes in biomass of summer (June–September) phytoplankton over the last two decades (1990–2008) along a north–south gradient in the Baltic Sea. The areas were characterized by different temperature, salinity and nutrient conditions. Thirty taxonomic groups were selected for the statistical analysis. Increases in total phytoplankton, particularly cyanobacterial, biomass were observed in the Gulfs of Bothnia and Finland. In these two areas over the study period cyanobacteria also became abundant earlier in the season, and in the Curonian Lagoon Planktothrix agardhii replaced Aphanizomenon flos-aquae as the most abundant cyanobacterium. In general, water temperature was the most influential factor affecting the summer phytoplankton communities. Our data suggest that temperature increases resulting from climate change are likely to cause basin-specific changes in the phytoplankton communities, which in turn may affect overall ecosystem functioning in the Baltic Sea

    Absence of evidence for viral infection in colony-embedded cyanobacterial isolates from the Curonian Lagoon

    Get PDF
    The aim of the present study was to assess the frequency of viral infections in colony-embedded cells of the cyanobacteria Aphanizomenon flos-aquae and Microcystis aeruginosa collected from the brackish Curonian Lagoon. Natural and mitomycin C-treated A. flos-aquae and M. aeruginosa samples were examined for the presence of viruses and lysis by a combination of light-, epifluorescence and transmission electron microscopy techniques. Here we report a lack of evidence for virus infection, progeny formation and cell lysis in colony-embedded cells. of A. flos-aquae and M. aeruginosa. These results indicated that viruses contribute little to. the mortality of these cyanobacteria when the latter occur in colonies. Consequently, the results supported the hypothesis that colony formation can, at least temporarily, provide an efficient strategy for protection against virus-induced mortality. Finally, assuming that grazing has a negligible effect on colony-embedded cells in the Curonian Lagoon, we propose that most of the cyanobacterial biomass produced is lost from the pelagic food web by sedimentation
    corecore