39 research outputs found

    Epidemiology and pathophysiology of cancer-associated thrombosis

    Get PDF
    Venous thromboembolism (VTE) is a common complication in patients with malignant disease. First recognised by Bouillard in 1823 and later described by Trousseau in 1844, multiple studies have since provided considerable evidence for a clinical association between VTE and cancer. Across all cancers, the risk for VTE is elevated 7-fold; in certain malignancies, the risk for VTE may be increased up to 28-fold. Venous thromboembolism is the second leading cause of death in patients with cancer; among survivors, complications commonly include recurrent VTE and post-thrombotic syndrome, and (more rarely) chronic thromboembolic pulmonary hypertension, which are costly, and have a profound impact on the patient's quality of life. Tumour cells can activate blood coagulation through multiple mechanisms, including production of procoagulant, fibrinolytic, and proaggregating activities, release of proinflammatory and proangiogenic cytokines, and interacting directly with host vascular and blood cells (e.g., endothelial cells, leukocytes, and platelets) through adhesion molecules. Increasing evidence suggests that elements of the haemostatic system also have a direct role in eliciting or enhancing angiogenesis, cell survival, and metastasis. Despite the problem posed by VTE in the setting of cancer, it is evident that a significant number of oncologists do not recognise the link between cancer, its treatment, and thrombogenesis. On 22 May 2009, a group of UK-based physicians met in London, UK, to evaluate recent data on cancer thrombosis. This article (1 of 4) briefly reviews key data on the epidemiology and pathophysiology of VTE as a context for a discussion and consensus statement developed by meeting attendees, on the implications of this information for UK clinical practice

    Strategies to inhibit tumour associated integrin receptors: rationale for dual and multi-antagonists

    Get PDF
    YesThe integrins are a family of 24 heterodimeric transmembrane cell surface receptors. Involvement in cell attachment to the extracellular matrix, motility, and proliferation identifies integrins as therapeutic targets in cancer and associated conditions; thrombosis, angiogenesis and osteoporosis. The most reported strategy for drug development is synthesis of an agent that is highly selective for a single integrin receptor. However, the ability of cancer cells to change their integrin repertoire in response to drug treatment renders this approach vulnerable to the development of resistance and paradoxical promotion of tumor growth. Here, we review progress towards development of antagonists targeting two or more members of the RGD-binding integrins, notably αvβ3, αvβ5, αvβ6, αvβ8, α5β1, and αIIbβ3, as anticancer therapeutics

    Inhibition of pulmonary metastasis in a human MT3 breast cancer xenograft model by dual liposomes preventing intravasal fibrin clot formation

    Full text link
    International audienceThe process of metastasis formation in cancer is not completely understood and is the main reason cancer therapies fail. Previously, we showed that dual liposomes simultaneously containing the hemostatic inhibitor, dipyridamole and the anticancer drug, perifosine potently inhibited metastasis, causing a 90% reduction in the number of lung metastases in a murine experimental metastasis model. To gain deeper insight into the mechanisms leading to the inhibition of metastasis by these dual liposomes, in the present study, the development of metastases by MT3 breast cancer cells in a mouse xenograft model was analyzed in more detail with regard to tumor cell settlement and metastatic growth. We found that the development of lung metastases by MT3 tumor cells is essentially dependent on the formation of fibrin clots as a precondition for the pulmonary arrest of tumor cells and the subsequent intravascular expansion of micrometastases before their invasion into the surrounding tissue

    The Interleukin-6 inflammation pathway from cholesterol to aging – Role of statins, bisphosphonates and plant polyphenols in aging and age-related diseases

    Get PDF
    We describe the inflammation pathway from Cholesterol to Aging. Interleukin 6 mediated inflammation is implicated in age-related disorders including Atherosclerosis, Peripheral Vascular Disease, Coronary Artery Disease, Osteoporosis, Type 2 Diabetes, Dementia and Alzheimer's disease and some forms of Arthritis and Cancer. Statins and Bisphosphonates inhibit Interleukin 6 mediated inflammation indirectly through regulation of endogenous cholesterol synthesis and isoprenoid depletion. Polyphenolic compounds found in plants, fruits and vegetables inhibit Interleukin 6 mediated inflammation by direct inhibition of the signal transduction pathway. Therapeutic targets for the control of all the above diseases should include inhibition of Interleukin-6 mediated inflammation

    High dose interleukin-2 (Aldesleukin) - expert consensus on best management practices-2014

    Get PDF
    Interleukin-2 (IL-2) was historically one of the few treatments for adults with stage IV solid tumors that could produce complete responses (CRs) that were often durable for decades without further therapy. The majority of complete responders with metastatic renal cell carcinoma (mRCC) and metastatic melanoma (mM) could probably be classified as "cures". Recent publications have suggested improved efficacy, perhaps due to improved patient Selection based on a better understanding of clinical features predicting outcomes. Guidelines for clinical management were established from experience at the National Cancer Institute (NCI) and an affiliation of institutions known as the Cytokine Working Group (CWG), who were among the first to utilize HD IL-2 treatment outside of the NCI. As new centers have opened, further management variations have emerged based upon center-specific experience, to optimize administration of IL-2 and provide high quality care for patients at each individual site. Twenty years of evolution in differing environments has led to a plethora of clinical experience and effective management approaches. The goal of this review is to summarize the spectrum of HD IL-2 treatment approaches, describing various effective strategies that incorporate newer adjunctive treatments for managing the side effects of IL-2 in patients with mRCC and mM. The goal for IL-2 therapy is typically to administer the maximum number of doses of IL-2 without putting the patient at unacceptable risk for severe, irreversible toxicity. This review is based upon a consensus meeting and includes guidelines on pre-treatment screening, criteria for administration and withholding doses, and defines consensus criteria for safe administration and toxicity management. The somewhat heterogeneous best practices of 2014 will be compared and contrasted with the guidelines provided in 2001 and the package inserts from 1992 and 1998

    c-Myc-mediated genomic instability proceeds via a megakaryocytic endomitosis pathway involving Gp1bα

    No full text
    Genomic instability (GI) is essential for the initiation and evolution of many cancers and often precedes frank neoplastic conversion. Although GI can occur at several levels, the most conspicuous examples involve gains or losses of entire chromosomes (aneuploidy), the antecedent of which may be whole genome duplication (tetraploidy). Through largely undefined mechanisms, the c-Myc oncoprotein and its downstream target, MTMC1, promote tetraploidy and other forms of GI. In myeloid cells, c-Myc and MTMC1 also regulate a common, small subset of c-Myc target genes including GP1Bα, which encodes a subunit of the von Willebrand's factor receptor complex that mediates platelet adhesion and aggregation. Gp1bα also participates in megakaryocyte endomitosis, a form of controlled and precise whole-genome amplification. In this article, we show that both c-Myc and MTMC1 strongly up-regulate Gp1bα concurrent with their promotion of tetraploidy. shRNA-mediated inhibition of Gp1bα prevents tetraploidy by both c-Myc and MTMC1, whereas Gp1bα overexpression alone is sufficient to induce tetraploidy in established and primary cells. Once acquired, tetraploidy persists in most cases examined. Our results indicate that chromosome-level GI, induced by c-Myc overexpression, proceeds by means of the sequential up-regulation of MTMC1 and Gp1bα and further suggest that the pathways leading to megakaryocytic endomitosis and c-Myc-induced tetraploidy are mechanistically linked by their reliance on Gp1bα
    corecore