33 research outputs found

    Identifying stage-specific markers of Alzheimer's disease using quantitative proteomics

    Get PDF
    Alzheimer’s disease (AD) is a devastating neurodegenerative disorder that leads to progressive memory loss and impairment of other cognitive functions. It is the most prevalent form of dementia in the elderly and is estimated to affect 20 to 45 million people worldwide. The incidences are expected to rise sharply over the coming decades with no effective therapeutics available to combat the disease. Recent advances in AD research uncovered many important aspects of the disorder. Nevertheless, the AD progression at the molecular level, particularly at its early stage, remains elusive. In this thesis I investigated the changes in the brain proteome and phosphoproteome over the course of neurodegeneration in a triple transgenic mouse model of AD (3×Tg-AD). Bioinformatic analysis of stage-specific alterations in protein expression and phosphorylation allowed to determine the affected biological functions along the progression of the disorder. Notably, proteins related to apoptotic response, mitochondria function and synaptic transmission were among the most affected groups in the early stages of AD. Several proteins in the dataset exhibited strong expression change before the AD onset in 3×Tg-AD mice. These proteins can be considered as putative presymptomatic brain markers of AD and pose a special interest for their potential in early diagnosis and treatment of AD. Closer investigation of one such marker, heme-binding protein 1 (Hebp1), revealed its increased expression in the brains of patients affected by rapidly-progressing forms of AD. Furthermore, Hebp1 is found to be expressed predominantly in neurons where it exhibits a perimitochondrial localization and interacts with the mitochondrial contact site and cristae organizing system (MICOS) complex. Remarkably, genetic depletion of Hebp1 reduces apoptosis induced by excessive levels of heme. Importantly, abnormalities in heme metabolism and disturbance of brain vasculature were previously reported in AD. Collectively, my findings suggest that the increase in Hebp1 expression early in AD progression can be linked to impaired heme metabolism and neuronal loss

    Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia

    Get PDF
    BACKGROUND Patients with elevated triglyceride levels are at increased risk for ischemic events. Icosapent ethyl, a highly purified eicosapentaenoic acid ethyl ester, lowers triglyceride levels, but data are needed to determine its effects on ischemic events. METHODS We performed a multicenter, randomized, double-blind, placebo-controlled trial involving patients with established cardiovascular disease or with diabetes and other risk factors, who had been receiving statin therapy and who had a fasting triglyceride level of 135 to 499 mg per deciliter (1.52 to 5.63 mmol per liter) and a low-density lipoprotein cholesterol level of 41 to 100 mg per deciliter (1.06 to 2.59 mmol per liter). The patients were randomly assigned to receive 2 g of icosapent ethyl twice daily (total daily dose, 4 g) or placebo. The primary end point was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, or unstable angina. The key secondary end point was a composite of cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke. RESULTS A total of 8179 patients were enrolled (70.7% for secondary prevention of cardiovascular events) and were followed for a median of 4.9 years. A primary end-point event occurred in 17.2% of the patients in the icosapent ethyl group, as compared with 22.0% of the patients in the placebo group (hazard ratio, 0.75; 95% confidence interval [CI], 0.68 to 0.83; P<0.001); the corresponding rates of the key secondary end point were 11.2% and 14.8% (hazard ratio, 0.74; 95% CI, 0.65 to 0.83; P<0.001). The rates of additional ischemic end points, as assessed according to a prespecified hierarchical schema, were significantly lower in the icosapent ethyl group than in the placebo group, including the rate of cardiovascular death (4.3% vs. 5.2%; hazard ratio, 0.80; 95% CI, 0.66 to 0.98; P=0.03). A larger percentage of patients in the icosapent ethyl group than in the placebo group were hospitalized for atrial fibrillation or flutter (3.1% vs. 2.1%, P=0.004). Serious bleeding events occurred in 2.7% of the patients in the icosapent ethyl group and in 2.1% in the placebo group (P=0.06). CONCLUSIONS Among patients with elevated triglyceride levels despite the use of statins, the risk of ischemic events, including cardiovascular death, was significantly lower among those who received 2 g of icosapent ethyl twice daily than among those who received placebo. (Funded by Amarin Pharma; REDUCE-IT ClinicalTrials.gov number, NCT01492361

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure &lt; 100 mmHg (n = 1127), estimated glomerular filtration rate &lt; 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    A neuronal PI(3,4,5)P3-dependent program of oligodendrocyte precursor recruitment and myelination

    Get PDF
    The molecular trigger of CNS myelination is unknown. By targeting Pten in cerebellar granule cells and activating the AKT1–mTOR pathway, we increased the caliber of normally unmyelinated axons and the expression of numerous genes encoding regulatory proteins. This led to the expansion of genetically wild-type oligodendrocyte progenitor cells, oligodendrocyte differentiation and de novo myelination of parallel fibers. Thus, a neuronal program dependent on the phosphoinositide PI(3,4,5)P3 is sufficient to trigger all steps of myelination

    Heme oxygenase-1 inhibits myoblast differentiation by targeting myomirs

    No full text
    AIMS: Heme oxygenase-1 (HMOX1) is a cytoprotective enzyme degrading heme to biliverdin, iron ions, and carbon monoxide, whose expression is induced in response to oxidative stress. Its overexpression has been suggested as a strategy improving survival of transplanted muscle precursors. Results: Here we demonstrated that HMOX1 inhibits differentiation of myoblasts and modulates miRNA processing: downregulates Lin28 and DGCR8, lowers the total pool of cellular miRNAs, and specifically blocks induction of myomirs. Genetic or pharmacological activation of HMOX1 in C2C12 cells reduces the abundance of miR-1, miR-133a, miR-133b, and miR-206, which is accompanied by augmented production of SDF-1 and miR-146a, decreased expression of MyoD, myogenin, and myosin, and disturbed formation of myotubes. Similar relationships between HMOX1 and myomirs were demonstrated in murine primary satellite cells isolated from skeletal muscles of HMOX1(+/+), HMOX1(+/−), and HMOX1(−/−) mice or in human rhabdomyosarcoma cell lines. Inhibition of myogenic development is independent of antioxidative properties of HMOX1. Instead it is mediated by CO-dependent inhibition of c/EBPδ binding to myoD promoter, can be imitated by SDF-1, and partially reversed by enforced expression of miR-133b and miR-206. Control C2C12 myoblasts injected to gastrocnemius muscles of NOD-SCID mice contribute to formation of muscle fibers. In contrast, HMOX1 overexpressing C2C12 myoblasts form fast growing, hyperplastic tumors, infiltrating the surrounding tissues, and disseminating to the lungs. Innovation: We evidenced for the first time that HMOX1 inhibits differentiation of myoblasts, affects the miRNA processing enzymes, and modulates the miRNA transcriptome. Conclusion: HMOX1 improves the survival of myoblasts, but concurrently through regulation of myomirs, may act similarly to oncogenes, increasing the risk of hyperplastic growth of myogenic precursors. Antioxid. Redox Signal. 16, 113–127
    corecore