30 research outputs found

    Large scale multiplex PCR improves pathogen detection by DNA microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medium density DNA microchips that carry a collection of probes for a broad spectrum of pathogens, have the potential to be powerful tools for simultaneous species identification, detection of virulence factors and antimicrobial resistance determinants. However, their widespread use in microbiological diagnostics is limited by the problem of low pathogen numbers in clinical specimens revealing relatively low amounts of pathogen DNA.</p> <p>Results</p> <p>To increase the detection power of a fluorescence-based prototype-microarray designed to identify pathogenic microorganisms involved in sepsis, we propose a large scale multiplex PCR (LSplex PCR) for amplification of several dozens of gene-segments of 9 pathogenic species. This protocol employs a large set of primer pairs, potentially able to amplify 800 different gene segments that correspond to the capture probes spotted on the microarray. The LSplex protocol is shown to selectively amplify only the gene segments corresponding to the specific pathogen present in the analyte. Application of LSplex increases the microarray detection of target templates by a factor of 100 to 1000.</p> <p>Conclusion</p> <p>Our data provide a proof of principle for the improvement of detection of pathogen DNA by microarray hybridization by using LSplex PCR.</p

    WIPI-1 Positive Autophagosome-Like Vesicles Entrap Pathogenic Staphylococcus aureus for Lysosomal Degradation

    Get PDF
    Invading pathogens provoke the autophagic machinery and, in a process termed xenophagy, the host cell survives because autophagy is employed as a safeguard for pathogens that escaped phagosomes. However, some pathogens can manipulate the autophagic pathway and replicate within the niche of generated autophagosome-like vesicles. By automated fluorescence-based high content analyses, we demonstrate that Staphylococcus aureus strains (USA300, HG001, SA113) stimulate autophagy and become entrapped in intracellular PtdIns(3)P-enriched vesicles that are decorated with human WIPI-1, an essential PtdIns(3)P effector of canonical autophagy and membrane protein of both phagophores and autophagosomes. Further, agr-positive S. aureus (USA300, HG001) strains were more efficiently entrapped in WIPI-1 positive autophagosome-like vesicles when compared to agr-negative cells (SA113). By confocal and electron microscopy we provide evidence that single- and multiple-Staphylococci entrapped undergo cell division. Moreover, the number of WIPI-1 positive autophagosome-like vesicles entrapping Staphylococci significantly increased upon (i) lysosomal inhibition by bafilomycin A1 and (ii) blocking PIKfyve-mediated PtdIns(3,5)P2 generation by YM201636. In summary, our results provide evidence that the PtdIns(3)P effector function of WIPI-1 is utilized during xenophagy of Staphylococcus aureus. We suggest that invading S. aureus cells become entrapped in autophagosome-like WIPI-1 positive vesicles targeted for lysosomal degradation in nonprofessional host cells

    Recent Zika Virus Isolates Induce Premature Differentiation of Neural Progenitors in Human Brain Organoids

    Get PDF
    The recent Zika virus (ZIKV) epidemic is associated with microcephaly in newborns. Although the connection between ZIKV and neurodevelopmental defects is widely recognized, the underlying mechanisms are poorly understood. Here we show that two recently isolated strains of ZIKV, an American strain from an infected fetal brain (FB-GWUH-2016) and a closely-related Asian strain (H/PF/2013), productively infect human iPSC-derived brain organoids. Both of these strains readily target to and replicate in proliferating ventricular zone (VZ) apical progenitors. The main phenotypic effect was premature differentiation of neural progenitors associated with centrosome perturbation, even during early stages of infection, leading to progenitor depletion, disruption of the VZ, impaired neurogenesis, and cortical thinning. The infection pattern and cellular outcome differ from those seen with the extensively passaged ZIKV strain MR766. The structural changes we see after infection with these more recently isolated viral strains closely resemble those seen in ZIKV-associated microcephaly.Peer reviewe

    Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection

    Get PDF
    The interferon-γ (IFN-γ)-inducible immunity-related GTPase (IRG), Irgm1, plays an essential role in restraining activation of the IRG pathogen resistance system. However, the loss of Irgm1 in mice also causes a dramatic but unexplained susceptibility phenotype upon infection with a variety of pathogens, including many not normally controlled by the IRG system. This phenotype is associated with lymphopenia, hemopoietic collapse, and death of the mouse.Deutscher Akademischer Austausch Dienst (DAAD); International Graduate School in Development Health and Disease (IGS-DHD); Deutsche For-schungsgemeinschaft (SFBs 635, 670, 680); Max-Planck-Gesellschaft (Max Planck Fellowship)

    Strain-Specific Association of Cytotoxic Activity and Virulence of Clinical Staphylococcus aureus Isolates

    No full text
    Staphylococcus aureus has been shown to invade and induce the death of various cell types. Here we investigate whether the cytotoxicity of intracellular S. aureus is a general feature or rather characteristic of individual S. aureus strains. The majority of 23 randomly collected clinical S. aureus isolates were killed inside keratinocytes and fibroblasts, indicating that the uptake of S. aureus represents an important mechanism of cell-autonomous host defense. However, seven independent S. aureus isolates survived intracellularly and induced significant cytotoxicity for their host cells. Subcloning analysis revealed that the ability or inability to kill host cells is a stable, apparently genetically determined trait of a given S. aureus isolate. We show that noncytotoxic strains but not cytotoxic strains colocalize with the lysosomal marker LAMP-1, suggesting that only cytotoxic strains escape degradation by the endolysosomal pathway. In a mouse septicemic model, cytotoxic S. aureus isolates produce significantly greater lethality (96%) compared to noncytotoxic strains (41%), which corresponds to 23-, 63-, and 30,000-fold increases of bacterial loads in the liver, spleen, and kidney, respectively. Finally, cytotoxic S. aureus strains produce clinically apparent arthritis in mice at a greater frequency than compared to noncytotoxic S. aureus strains. The results of our study unravel a previously unrecognized dichotomy of cytotoxic and noncytotoxic S. aureus isolates, which may play an important role in the dissemination of, and mortality induced by, S. aureus infection

    Proteomics-Based Identification of Anchorless Cell Wall Proteins as Vaccine Candidates against Staphylococcus aureus▿ †

    No full text
    Staphylococcus aureus is an important human pathogen with increasing clinical impact due to the extensive spread of antibiotic-resistant strains. Therefore, development of a protective polyvalent vaccine is of great clinical interest. We employed an intravenous immunoglobulin (IVIG) preparation as a source of antibodies directed against anchorless S. aureus surface proteins for identification of novel vaccine candidates. In order to identify such proteins, subtractive proteome analysis (SUPRA) of S. aureus anchorless cell wall proteins was performed. Proteins reacting with IVIG but not with IVIG depleted of S. aureus-specific opsonizing antibodies were considered vaccine candidates. Nearly 40 proteins were identified by this preselection method using matrix-assisted laser desorption ionization—time of flight analysis. Three of these candidate proteins, enolase (Eno), oxoacyl reductase (Oxo), and hypothetical protein hp2160, were expressed as glutathione S-transferase fusion proteins, purified, and used for enrichment of corresponding immunoglobulin Gs from IVIG by affinity chromatography. Use of affinity-purified anti-Eno, anti-Oxo, and anti-hp2160 antibodies resulted in opsonization, phagocytosis, and killing of S. aureus by human neutrophils. High specific antibody titers were detected in mice immunized with recombinant antigens. In mice challenged with bioluminescent S. aureus, reduced staphylococcal spread was measured by in vivo imaging. The recovery of S. aureus CFU from organs of immunized mice was diminished 10- to 100-fold. Finally, mice immunized with hp2160 displayed statistically significant higher survival rates after lethal challenge with clinically relevant S. aureus strains. Taken together, our data suggest that anchorless cell wall proteins might be promising vaccine candidates and that SUPRA is a valuable tool for their identification

    Mobile Genetic Elements Harboring Antibiotic Resistance Determinants in Acinetobacter baumannii Isolates From Bolivia

    Get PDF
    Using a combination of short- and long-read DNA sequencing, we have investigated the location of antibiotic resistance genes and characterized mobile genetic elements (MGEs) in three clinical multi-drug resistant Acinetobacter baumannii. The isolates, collected in Bolivia, clustered separately with three different international clonal lineages. We found a diverse array of transposons, plasmids and resistance islands related to different insertion sequence (IS) elements, which were located in both the chromosome and in plasmids, which conferred resistance to multiple antimicrobials, including carbapenems. Carbapenem resistance might be caused by a Tn2008 carrying the bla(OXA-23) gene. Some plasmids were shared between the isolates. Larger plasmids were less conserved than smaller ones and they shared some homologous regions, while others were more diverse, suggesting that these big plasmids are more plastic than the smaller ones. The genetic basis of antimicrobial resistance in Bolivia has not been deeply studied until now, and the mobilome of these A. baumannii isolates, combined with their multi-drug resistant phenotype, mirror the transfer and prevalence of MGEs contributing to the spread of antibiotic resistance worldwide and require special attention. These findings could be useful to understand the antimicrobial resistance genetics of A. baumannii in Bolivia and the difficulty in tackling these infections

    Identification and Characterization of Bacterial Pathogens Causing Bloodstream Infections by DNA Microarray

    No full text
    Bloodstream infections are potentially life-threatening and require rapid identification and antibiotic susceptibility testing of the causative pathogen in order to facilitate specific antimicrobial therapy. We developed a prototype DNA microarray for the identification and characterization of three important bacteremia-causing species: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The array consisted of 120 species-specific gene probes 200 to 800 bp in length that were amplified from recombinant plasmids. These probes represented genes encoding housekeeping proteins, virulence factors, and antibiotic resistance determinants. Evaluation with 42 clinical isolates, 3 reference strains, and 13 positive blood cultures revealed that the DNA microarray was highly specific in identifying S. aureus, E. coli, and P. aeruginosa strains and in discriminating them from closely related gram-positive and gram-negative bacterial strains also known to be etiological agents of bacteremia. We found a nearly perfect correlation between phenotypic antibiotic resistance determined by conventional susceptibility testing and genotypic antibiotic resistance by hybridization to the S. aureus resistance gene probes mecA (oxacillin-methicillin resistance), aacA-aphD (gentamicin resistance), ermA (erythromycin resistance), and blaZ (penicillin resistance) and the E. coli resistance gene probes bla(TEM-106) (penicillin resistance) and aacC2 (aminoglycoside resistance). Furthermore, antibiotic resistance and virulence gene probes permitted genotypic discrimination within a species. This novel DNA microarray demonstrates the feasibility of simultaneously identifying and characterizing bacteria in blood cultures without prior amplification of target DNA or preidentification of the pathogen
    corecore