34 research outputs found
Genome Sequencing and Comparative Analysis of Saccharomyces cerevisiae Strains of the Peterhof Genetic Collection
The Peterhof genetic collection of Saccharomyces cerevisiae strains (PGC) is a large laboratory stock that has accumulated several thousands of strains for over than half a century. It originated independently of other common laboratory stocks from a distillery lineage (race XII). Several PGC strains have been extensively used in certain fields of yeast research but their genomes have not been thoroughly explored yet. Here we employed whole genome sequencing to characterize five selected PGC strains including one of the closest to the progenitor, 15V-P4, and several strains that have been used to study translation termination and prions in yeast (25-25-2V-P3982, 1B-D1606, 74-D694, and 6P-33G-D373). The genetic distance between the PGC progenitor and S288C is comparable to that between two geographically isolated populations. The PGC seems to be closer to two bakery strains than to S288C-related laboratory stocks or European wine strains. In genomes of the PGC strains, we found several loci which are absent from the S288C genome; 15V-P4 harbors a rare combination of the gene cluster characteristic for wine strains and the RTM1 cluster. We closely examined known and previously uncharacterized gene variants of particular strains and were able to establish the molecular basis for known phenotypes including phenylalanine auxotrophy, clumping behavior and galactose utilization. Finally, we made sequencing data and results of the analysis available for the yeast community. Our data widen the knowledge about genetic variation between Saccharomyces cerevisiae strains and can form the basis for planning future work in PGC-related strains and with PGC-derived alleles.PBD acknowledges the Russian Foundation for Basic Research (www.rfbr.ru) for grant 14-04-31265. OVT and SGIV acknowledge the Russian Foundation for Basic Research for grant 15-29-02526. JVS acknowledges the Russian Science Foundation (www.rscf.ru) for grant 14-50-00069 and the Saint-Petersburg State University for grant 1.38.426.2015. PBD, AGM, EAR, and JVS acknowledge the Saint-Petersburg State University for research grant 1.37.291.2015. PBD and OVT acknowledge the Saint-Petersburg City Committee on Science and High School (knvsh.gov.spb.ru/) for grants 15404 and 15919, respectively. PBD, AGM, JVS, and SGIV acknowledge the Saint-Petersburg State University for research grant 15.61.2218.2013. PBD acknowledges the Saint-Petersburg State University for research grant 1.42.1394.2015
Genome-wide sequence analyses of ethnic populations across Russia
The Russian Federation is the largest and one of the most ethnically diverse countries in the world, however no centralized reference database of genetic variation exists to date. Such data are crucial for medical genetics and essential for studying population history. The Genome Russia Project aims at filling this gap by performing whole genome sequencing and analysis of peoples of the Russian Federation. Here we report the characterization of genome-wide variation of 264 healthy adults, including 60 newly sequenced samples. People of Russia carry known and novel genetic variants of adaptive, clinical and functional consequence that in many cases show allele frequency divergence from neighboring populations. Population genetics analyses revealed six phylogeographic partitions among indigenous ethnicities corresponding to their geographic locales. This study presents a characterization of population-specific genomic variation in Russia with results important for medical genetics and for understanding the dynamic population history of the world's largest country
α-Diphenylphosphino-N-(pyrazin-2-yl)glycine as a ligand in Ni-catalyzed ethylene oligomerization
a-Diphenylphosphino-N-(pyrazin-2-yl)glycine was synthesized by the three-component condensation of diphenylphosphine, glyoxylic acid hydrate, and 2-aminopyrazine and its structure was confirmed by X-ray diffraction. It reacted with [Ni(COD)2] (COD is cycloocta-1,5-diene) to give complexes that were tested as catalysts for selective dimerization/oligomerization of ethylene to but-1-ene (main product) and C6-C14 a-olefins, respectively.575-57
Supercritical Antisolvent Processing of Nitrocellulose: Downscaling to Nanosize, Reducing Friction Sensitivity and Introducing Burning Rate Catalyst
A supercritical antisolvent process has been applied to obtain the nitrocellulose nanoparticles with an average size of 190 nm from the nitrocellulose fibers of 20 μm in diameter. Compared to the micron-sized powder, nano-nitrocellulose is characterized with a slightly lower decomposition onset, however, the friction sensitivity has been improved substantially along with the burning rate increasing from 3.8 to 4.7 mm·s−1 at 2 MPa. Also, the proposed approach allows the production of stable nitrocellulose composites. Thus, the addition of 1 wt.% carbon nanotubes further improves the sensitivity of the nano-nitrocellulose up to the friction-insensitive level. Moreover, the simultaneous introduction of carbon nanotubes and nanosized iron oxide catalyzes the combustion process evidenced by a high-speed filming and resulting in the 20% burning rate increasing at 12 MPa. The presented approach to the processing of energetic nanomaterials based on the supercritical fluid technology opens the way to the production of nitrocellulose-based nanopowders with improved performance
Synthesis and Antifungal Activity of β-Hydroxysulfides of 1,3-Dioxepane Series
Synthesis of β-hydroxysulfides of 1,3-dioxepane series and their further functionalization were performed. Chiral β-hydroxysulfides were separated into enantiomers using enzymatic acylation by lipase PS. Study of antifungal activity of the obtained compounds showed that some enantiomerically pure 6-arylthio-1,3-dioxepan-5-ols represent promising antifungal drug candidates