12 research outputs found

    Superior performance of continuous over pulsatile flow ventricular assist devices in the single ventricle circulation: A computational study

    Get PDF
    This study compares the physiological responses of systemic-to-pulmonary shunted single ventricle patients to pulsatile and continuous flow ventricular assist devices (VADs). Performance differences between pulsatile and continuous flow VADs have been clinically observed, but the underlying mechanism remains poorly understood. Six systemic-to-pulmonary shunted single ventricle patients (mean BSA=0.30 m2) were computationally simulated using a lumped-parameter network tuned to match patient specific clinical data. A first set of simulations compared current clinical implementation of VADs in single ventricle patients. A second set modified pulsatile flow VAD settings with the goal to optimize cardiac output (CO). For all patients, the best-case continuous flow VAD CO was at least 0.99 L/min greater than the optimized pulsatile flow VAD CO (p=0.001). The 25 and 50 mL pulsatile flow VADs exhibited incomplete filling at higher heart rates that reduced CO as much as 9.7% and 37.3% below expectations respectively. Optimization of pulsatile flow VAD settings did not achieve statistically significant (p\u3c0.05) improvement to CO. Results corroborate clinical experience that continuous flow VADs produce higher CO and superior ventricular unloading in single ventricle patients. Impaired filling leads to performance degradation of pulsatile flow VADs in the single ventricle circulation

    Pulmonary expression of the hepatocyte growth factor receptor c-Met shifts from medial to intimal layer after cavopulmonary anastomosis

    Get PDF
    AbstractObjectivePulmonary arteriovenous malformations occur in up to 60% of patients after cavopulmonary anastomosis. We compared the effects of cavopulmonary anastomosis and pulmonary artery banding on lung gene expression in an ovine model to study the abnormal pulmonary vascular remodeling after the exclusion of inferior vena caval blood independent of reduced pulmonary blood flow. We previously demonstrated by contrast echocardiography that pulmonary arteriovenous malformations develop by 8 weeks after cavopulmonary anastomosis but not after pulmonary artery banding. Hepatocyte growth factor, a pleiotropic factor with morphogenic, mitogenic, and angiogenic activities, signals via its specific receptor c-Met to induce the antiapoptotic factor Bcl-2. In this study, we examined pulmonary artery expression of these factors and their potential role in pulmonary artery remodeling after cavopulmonary anastomosis and pulmonary artery banding.MethodsEighteen lambs aged 35 to 45 days were placed into 3 groups: cavopulmonary anastomosis, pulmonary artery banding, and control (n = 6/group). In the cavopulmonary anastomosis group, the superior vena cava was anastomosed to the right pulmonary artery in an end-to-end fashion. In the pulmonary artery banding group, the left pulmonary artery was banded to reduce blood flow to 20% of control. The control group had a simple right pulmonary artery clamp for 30 minutes. Lung was harvested for Western blot, reverse transcriptase–polymerase chain reaction, and immunostaining at 2 weeks (n = 3/group) and 5 weeks (n = 3/group) after surgery.ResultsThe expression of c-Met mRNA after cavopulmonary anastomosis was increased by twofold compared with the control or pulmonary artery banding group. The total lung expression of c-Met by Western blot was also up regulated at 2 weeks (P < .05). However, total lung expression of hepatocyte growth factor and Bcl-2 by Western and reverse transcriptase–polymerase chain reaction was not different from the control and pulmonary artery banding groups at both 2 and 5 weeks after surgery. Immunohistochemical analysis revealed that c-Met expression was localized to the intimal layer of the pulmonary artery in the cavopulmonary anastomosis, while its expression in the control and pulmonary artery banding lungs was localized to the medial layer. Localization of Bcl-2 on the intimal layer in lambs with cavopulmonary anastomosis followed the same pattern as c-Met.ConclusionsAfter cavopulmonary anastomosis, pulmonary artery expression of the hepatocyte growth factor receptor c-Met and one of its downstream effectors, Bcl-2, had increased in the intimal layer and decreased in the medial layer. Because the hepatocyte growth factor signaling promotes increased endothelial cell survival, it may have a role in pulmonary artery remodeling following cavopulmonary anastomosis. In addition, the change of c-Met expression in the medial layer after cavopulmonary anastomosis suggests a possible mechanism for the smooth muscle cell alteration related to abnormal angiogenesis

    Conserved and divergent aspects of human T-cell development and migration in humanized mice.

    No full text
    Humanized mice represent an important model to study the development and function of the human immune system. While it is known that mouse thymic stromal cells can support human T-cell development, the extent of interspecies cross-talk and the degree to which these systems recapitulate normal human T-cell development remain unclear. To address these questions, we compared conventional and non-conventional T-cell development in a neonatal chimera humanized mouse model with that seen in human fetal and neonatal thymus samples, and also examined the impact of a human HLA-A2 transgene expressed by the mouse stroma. Given that dynamic migration and cell-cell interactions are essential for T-cell differentiation, we also studied the intrathymic migration pattern of human thymocytes developing in a murine thymic environment. We found that both conventional T-cell development and intra-thymic migration patterns in humanized mice closely resemble human thymopoiesis. Additionally, we show that developing human thymocytes engage in short, serial interactions with other human hematopoietic-derived cells. However, non-conventional T-cell differentiation in humanized mice differed from both fetal and neonatal human thymopoiesis, including a marked deficiency of Foxp3(+) T-cell development. These data suggest that although the murine thymic microenvironment can support a number of aspects of human T-cell development, important differences remain, and additional human-specific factors may be required

    Pulmonary vascular K +

    No full text

    Conserved and divergent aspects of human T‐cell development and migration in humanized mice

    No full text
    Humanized mice represent an important model to study the development and function of the human immune system. While it is known that mouse thymic stromal cells can support human T-cell development, the extent of interspecies cross-talk and the degree to which these systems recapitulate normal human T-cell development remain unclear. To address these questions, we compared conventional and non-conventional T-cell development in a neonatal chimera humanized mouse model with that seen in human fetal and neonatal thymus samples, and also examined the impact of a human HLA-A2 transgene expressed by the mouse stroma. Given that dynamic migration and cell–cell interactions are essential for T-cell differentiation, we also studied the intrathymic migration pattern of human thymocytes developing in a murine thymic environment. We found that both conventional T-cell development and intra-thymic migration patterns in humanized mice closely resemble human thymopoiesis. Additionally, we show that developing human thymocytes engage in short, serial interactions with other human hematopoietic-derived cells. However, non-conventional T-cell differentiation in humanized mice differed from both fetal and neonatal human thymopoiesis, including a marked deficiency of Foxp3(+) T-cell development. These data suggest that although the murine thymic microenvironment can support a number of aspects of human T-cell development, important differences remain, and additional human-specific factors may be required
    corecore