124 research outputs found

    Impact of the Major Baltic Inflow in 2014 on Manganese Cycling in the Gotland Deep (Baltic Sea)

    Get PDF
    The deep basins of the Baltic Sea, including the Gotland and Landsort Deeps, are well-known for the exceptional occurrence of sedimentary Mn carbonate. Although the details of the mechanisms of Mn carbonate formation are still under debate, a close relationship with episodic major Baltic inflows (MBIs) is generally assumed, at least for the Gotland Basin. However, the few studies on Mn cycling during MBIs suffer from a limited temporal resolution. Here we report on Mn dynamics in the water column and sediments of the Gotland Deep following an MBI that entered the Baltic Sea in December 2014. Water column profiles of dissolved Mn were obtained at a monthly to bi-monthly resolution between February 2015 and March 2017 and revealed an impact of the MBI on the Gotland Deep bottom waters beginning in March 2015. Water column profiles and budget estimates provided evidence for remarkable losses of dissolved Mn associated with the enhanced deposition of Mn oxide particles, as documented in sediment trap samples and surface sediments. In July 2015, subsequent to the nearly full oxygenation of the water column, clear signals of the re-establishment of bottom water anoxia appeared, interrupted by a second inflow pulse around February 2016. However, dissolved Mn concentrations of up to 40 μM in the bottom waters in June 2016 again indicated a pronounced reduction of Mn oxide and the escape of dissolved Mn back into the open water column. The absence of substantial amounts of Mn carbonate in the surface sediments at the end of the observation period suggested that the duration of bottom water oxygenation plays an important role in the formation of this mineral. Data from both an instrumental time series and a dated sediment core from the Gotland Deep supported this conclusion. Enhanced Mn carbonate formation occurred especially between the 1960s and mid-1970s, when several MBIs caused a long-lasting oxygenation of the water column. By contrast, Mn carbonate layers were much less pronounced or even missing after single MBIs in 1993, 2003, and 2014, each of which provided a comparatively short-term supply of O2 to the deeper water column

    A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century

    Get PDF
    The anthropogenically forced expansion of coastal hypoxia is a major environmental problem affecting coastal ecosystems and biogeochemical cycles throughout the world. The Baltic Sea is a semi-enclosed shelf sea whose central deep basins have been highly prone to deoxygenation during its Holocene history, as shown previously by numerous paleoenvironmental studies. However, long-term data on past fluctuations in the intensity of hypoxia in the coastal zone of the Baltic Sea are largely lacking, despite the significant role of these areas in retaining nutrients derived from the catchment. Here we present a 1500-year multiproxy record of near-bottom water redox changes from the coastal zone of the northern Baltic Sea, encompassing the climatic phases of the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA), and the Modern Warm Period (MoWP). Our reconstruction shows that although multicentennial climate variability has modulated the depositional conditions and delivery of organic matter (OM) to the basin the modern aggravation of coastal hypoxia is unprecedented and, in addition to gradual changes in the basin configuration, it must have been forced by excess human-induced nutrient loading. Alongside the anthropogenic nutrient input, the progressive deoxygenation since the beginning of the 1900s was fueled by the combined effects of gradual shoaling of the basin and warming climate, which amplified sediment focusing and increased the vulnerability to hypoxia. Importantly, the eutrophication of coastal waters in our study area began decades earlier than previously thought, leading to a marked aggravation of hypoxia in the 1950s. We find no evidence of similar anthropogenic forcing during the MCA. These results have implications for the assessment of reference conditions for coastal water quality. Furthermore, this study highlights the need for combined use of sedimentological, ichnological, and geochemical proxies in order to robustly reconstruct subtle redox shifts especially in dynamic, non-euxinic coastal settings with strong seasonal contrasts in the bottom water quality.Peer reviewe

    Chromium Cycling in Redox‐Stratified Basins Challenges δ <sup>53</sup> Cr Paleoredox Proxy Applications

    Get PDF
    Chromium stable isotope composition (δ53Cr) is a promising tracer for redox conditions throughout Earth's history; however, the geochemical controls of δ53Cr have not been assessed in modern redox-stratified basins. We present new chromium (Cr) concentration and δ53Cr data in dissolved, sinking particulate, and sediment samples from the redox-stratified Lake Cadagno (Switzerland), a modern Proterozoic ocean analog. These data demonstrate isotope fractionation during incomplete (non-quantitative) reduction and removal of Cr above the chemocline, driving isotopically light Cr accumulation in euxinic deep waters. Sediment authigenic Cr is isotopically distinct from overlying waters but comparable to average continental crust. New and published data from other redox-stratified basins show analogous patterns. This challenges assumptions from δ53Cr paleoredox applications that quantitative Cr reduction and removal limits isotope fractionation. Instead, fractionation from non-quantitative Cr removal leads to sedimentary records offset from overlying waters and not reflecting high δ53Cr from oxidative continental weathering.ISSN:0094-8276ISSN:1944-800

    Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea

    Get PDF
    The Black Sea is the world’s largest anoxic basin and a model system for studying processes across redox gradients. In between the oxic surface and the deeper sulfidic waters there is an unusually broad layer of 10–40 m, where neither oxygen nor sulfide are detectable. In this suboxic zone, dissolved phosphate profiles display a pronounced minimum at the upper and a maximum at the lower boundary, with a peak of particulate phosphorus in between, which was suggested to be caused by the sorption of phosphate on sinking particles of metal oxides. Here we show that bacterial polyphosphate inclusions within large magnetotactic bacteria related to the genus Magnetococcus contribute substantially to the observed phosphorus peak, as they contain 26–34% phosphorus compared to only 1–5% in metal-rich particles. Furthermore, we found increased gene expression for polyphosphate kinases by several groups of bacteria including Magnetococcaceae at the phosphate maximum, indicating active bacterial polyphosphate degradation. We propose that large magnetotactic bacteria shuttle up and down within the suboxic zone, scavenging phosphate at the upper and releasing it at the lower boundary. In contrast to a passive transport via metal oxides, this bacterial transport can quantitatively explain the observed phosphate profiles.We are grateful for the competent technical assistance of Ronny Baaske, Christian Burmeister, Christin Laudan and Christian Meeske. We are greatly indebted to Cindy Lee and Bo Barker Jørgensen for providing extremely helpful comments on an earlier version of the manuscript. Horst D. Schulz and René Friedland are acknowledged for stimulating discussions on the modeling approach. We thank the captain and the crew of the R/V “Maria S. Merian” for the excellent support on board and the DFG (MSM33) and BMBF (01DK12043) for financing the cruise. The particle analysis was funded by the BMBF (03F0663A). S.B. was funded by a BONUS BLUEPRINT project (03F0679A awarded to KJ; http://blueprint- project.org), supported by BONUS (Art 185), funded jointly by the EU and the German Federal Ministry of Education and Research (BMBF). T. S. was funded by the German research foundation (DFG) (awarded to K.J., JU 367/16-1). Metagenome sequencing was done at the Swedish National Genomics Infrastructure (NGI) at SciLifeLab (Sweden).We are grateful for the competent technical assistance of Ronny Baaske, Christian Burmeister, Christin Laudan and Christian Meeske. We are greatly indebted to Cindy Lee and Bo Barker Jørgensen for providing extremely helpful comments on an earlier version of the manuscript. Horst D. Schulz and René Friedland are acknowledged for stimulating discussions on the modeling approach. We thank the captain and the crew of the R/V “Maria S. Merian” for the excellent support on board and the DFG (MSM33) and BMBF (01DK12043) for financing the cruise. The particle analysis was funded by the BMBF (03F0663A). S.B. was funded by a BONUS BLUEPRINT project (03F0679A awarded to KJ; http://blueprint- project.org), supported by BONUS (Art 185), funded jointly by the EU and the German Federal Ministry of Education and Research (BMBF). T. S. was funded by the German research foundation (DFG) (awarded to K.J., JU 367/16-1). Metagenome sequencing was done at the Swedish National Genomics Infrastructure (NGI) at SciLifeLab (Sweden)

    A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century

    Get PDF
    The anthropogenically forced expansion of coastal hypoxia is a major environmental problem affecting coastal ecosystems and biogeochemical cycles throughout the world. The Baltic Sea is a semi-enclosed shelf sea whose central deep basins have been highly prone to deoxygenation during its Holocene history, as shown previously by numerous paleoenvironmental studies. However, long-term data on past fluctuations in the intensity of hypoxia in the coastal zone of the Baltic Sea are largely lacking, despite the significant role of these areas in retaining nutrients derived from the catchment. Here we present a 1500-year multiproxy record of near-bottom water redox changes from the coastal zone of the northern Baltic Sea, encompassing the climatic phases of the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA), and the Modern Warm Period (MoWP). Our reconstruction shows that although multicentennial climate variability has modulated the depositional conditions and delivery of organic matter (OM) to the basin the modern aggravation of coastal hypoxia is unprecedented and, in addition to gradual changes in the basin configuration, it must have been forced by excess human-induced nutrient loading. Alongside the anthropogenic nutrient input, the progressive deoxygenation since the beginning of the 1900s was fueled by the combined effects of gradual shoaling of the basin and warming climate, which amplified sediment focusing and increased the vulnerability to hypoxia. Importantly, the eutrophication of coastal waters in our study area began decades earlier than previously thought, leading to a marked aggravation of hypoxia in the 1950s. We find no evidence of similar anthropogenic forcing during the MCA. These results have implications for the assessment of reference conditions for coastal water quality. Furthermore, this study highlights the need for combined use of sedimentological, ichnological, and geochemical proxies in order to robustly reconstruct subtle redox shifts especially in dynamic, non-euxinic coastal settings with strong seasonal contrasts in the bottom water quality.</p

    The East Gotland Basin (Baltic Sea) as a candidate Global Boundary Stratotype Section and Point for the Anthropocene series

    Get PDF
    The short sediment core EMB201/7-4 retrieved from the East Gotland Basin, central Baltic Sea, is explored here as a candidate to host the stratigraphical basis for the Anthropocene series and its equivalent Anthropocene epoch, still to be formalized in the Geological Time Scale. The core has been accurately dated back to 1840 CE using a well-established event stratigraphy approach. A pronounced and significant change occurs at 26.5 cm (dated 1956 ± 4 CE) for a range of geochemical markers including 239+240Pu, 241Am, fly-ash particles, DDT (organochlorine insecticide), total organic carbon, and bulk organic carbon stable isotopes. This stratigraphic level, which corresponds to a change in both lithology and sediment colour related to early anthropogenic-triggered eutrophication of the central Baltic Sea, is proposed as a Global Boundary Stratotype Section and Point for the Anthropocene series
    corecore