255 research outputs found

    High Potential of a Transposon mPing as a Marker System in japonica Γ— japonica Cross in Rice

    Get PDF
    Although quantitative traits loci (QTL) analysis has been widely performed to isolate agronomically important genes, it has been difficult to obtain molecular markers between individuals with similar phenotypes (assortative mating). Recently, the miniature inverted-repeat transposable element mPing was shown to be active in the japonica strain Gimbozu EG4 where it had accumulated more than 1000 copies. In contrast, most other japonicas, including Nipponbare, have 50 or fewer mPing insertions in their genome. In this study we have exploited the polymorphism of mPing insertion sites to generate 150 PCR markers in a cross between the closely related japonicas, Nipponbare Γ— Gimbozu (EG4). These new markers were distributed in genic regions of the whole genome and showed significantly higher polymorphism (150 of 183) than all other molecular markers tested including short sequence repeat markers (46 of 661). In addition, we performed QTL analysis with these markers using recombinant inbred lines derived from Nipponbare Γ— Gimbozu EG4, and successfully mapped a locus involved in heading date on the short arm of chromosome 6. Moreover, we could easily map two novel loci involved in the culm length on the short arms of chromosomes 3 and 10

    Determining the neurotransmitter concentration profile at active synapses

    Get PDF
    Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission

    Visualization of Glutamine Transporter Activities in Living Cells Using Genetically Encoded Glutamine Sensors

    Get PDF
    Glutamine plays a central role in the metabolism of critical biological molecules such as amino acids, proteins, neurotransmitters, and glutathione. Since glutamine metabolism is regulated through multiple enzymes and transporters, the cellular glutamine concentration is expected to be temporally dynamic. Moreover, differentiation in glutamine metabolism between cell types in the same tissue (e.g. neuronal and glial cells) is often crucial for the proper function of the tissue as a whole, yet assessing cell-type specific activities of transporters and enzymes in such heterogenic tissue by physical fractionation is extremely challenging. Therefore, a method of reporting glutamine dynamics at the cellular level is highly desirable. Genetically encoded sensors can be targeted to a specific cell type, hence addressing this knowledge gap. Here we report the development of FΓΆster Resonance Energy Transfer (FRET) glutamine sensors based on improved cyan and yellow fluorescent proteins, monomeric Teal Fluorescent Protein (mTFP)1 and venus. These sensors were found to be specific to glutamine, and stable to pH-changes within a physiological range. Using cos7 cells expressing the human glutamine transporter ASCT2 as a model, we demonstrate that the properties of the glutamine transporter can easily be analyzed with these sensors. The range of glutamine concentration change in a given cell can also be estimated using sensors with different affinities. Moreover, the mTFP1-venus FRET pair can be duplexed with another FRET pair, mAmetrine and tdTomato, opening up the possibility for real-time imaging of another molecule. These novel glutamine sensors will be useful tools to analyze specificities of glutamine metabolism at the single-cell level

    Prevention of depression and sleep disturbances in elderly with memory-problems by activation of the biological clock with light - a randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Depression frequently occurs in the elderly and in patients suffering from dementia. Its cause is largely unknown, but several studies point to a possible contribution of circadian rhythm disturbances. Post-mortem studies on aging, dementia and depression show impaired functioning of the suprachiasmatic nucleus (SCN) which is thought to be involved in the increased prevalence of day-night rhythm perturbations in these conditions. Bright light enhances neuronal activity in the SCN. Bright light therapy has beneficial effects on rhythms and mood in institutionalized moderate to advanced demented elderly. In spite of the fact that this is a potentially safe and inexpensive treatment option, no previous clinical trial evaluated the use of long-term daily light therapy to prevent worsening of sleep-wake rhythms and depressive symptoms in early to moderately demented home-dwelling elderly.</p> <p>Methods/Design</p> <p>This study investigates whether long-term daily bright light prevents worsening of sleep-wake rhythms and depressive symptoms in elderly people with memory complaints. Patients with early Alzheimer's Disease (AD), Mild Cognitive Impairment (MCI) and Subjective Memory Complaints (SMC), between the ages of 50 and 75, are included in a randomized double-blind placebo-controlled trial. For the duration of two years, patients are exposed to ~10,000 lux in the active condition or ~300 lux in the placebo condition, daily, for two half-hour sessions at fixed times in the morning and evening. Neuropsychological, behavioral, physiological and endocrine measures are assessed at baseline and follow-up every five to six months.</p> <p>Discussion</p> <p>If bright light therapy attenuates the worsening of sleep-wake rhythms and depressive symptoms, it will provide a measure that is easy to implement in the homes of elderly people with memory complaints, to complement treatments with cholinesterase inhibitors, sleep medication or anti-depressants or as a stand-alone treatment.</p> <p>Trial registration</p> <p>ISRCTN29863753</p

    Genome-Wide Analysis of Effectors of Peroxisome Biogenesis

    Get PDF
    Peroxisomes are intracellular organelles that house a number of diverse metabolic processes, notably those required for Ξ²-oxidation of fatty acids. Peroxisomes biogenesis can be induced by the presence of peroxisome proliferators, including fatty acids, which activate complex cellular programs that underlie the induction process. Here, we used multi-parameter quantitative phenotype analyses of an arrayed mutant collection of yeast cells induced to proliferate peroxisomes, to establish a comprehensive inventory of genes required for peroxisome induction and function. The assays employed include growth in the presence of fatty acids, and confocal imaging and flow cytometry through the induction process. In addition to the classical phenotypes associated with loss of peroxisomal functions, these studies identified 169 genes required for robust signaling, transcription, normal peroxisomal development and morphologies, and transmission of peroxisomes to daughter cells. These gene products are localized throughout the cell, and many have indirect connections to peroxisome function. By integration with extant data sets, we present a total of 211 genes linked to peroxisome biogenesis and highlight the complex networks through which information flows during peroxisome biogenesis and function
    • …
    corecore