32 research outputs found
Discovery of two new bright magnetic B stars: i Car and Atlas
The BRITE (BRIght Target Explorer) constellation of nano-satellites performs
seismology of bright stars via high precision photometry. In this context, we
initiated a high resolution, high signal-to-noise, high sensitivity,
spectropolarimetric survey of all stars brighter than V=4. The goal of this
survey is to detect new bright magnetic stars and provide prime targets for
both detailed magnetic studies and asteroseismology with BRITE. Circularly
polarised spectra were acquired with Narval at TBL (France) and HarpsPol at ESO
in La Silla (Chile). We discovered two new magnetic B stars: the B3V star i Car
and the B8V component of the binary star Atlas. Each star was observed twice to
confirm the magnetic detections and check for variability. These bright
magnetic B stars are prime targets for asteroseismology and for flux-demanding
techniques, such as interferometry.Comment: accepted in MNRAS Letters, 5 pages, 3 figure
Chandra HETGS Multi-Phase Spectroscopy of the Young Magnetic O Star theta^1 Orionis C
We report on four Chandra grating observations of the oblique magnetic
rotator theta^1 Ori C (O5.5 V) covering a wide range of viewing angles with
respect to the star's 1060 G dipole magnetic field. We employ line-width and
centroid analyses to study the dynamics of the X-ray emitting plasma in the
circumstellar environment, as well as line-ratio diagnostics to constrain the
spatial location, and global spectral modeling to constrain the temperature
distribution and abundances of the very hot plasma. We investigate these
diagnostics as a function of viewing angle and analyze them in conjunction with
new MHD simulations of the magnetically channeled wind shock mechanism on
theta^1 Ori C. This model fits all the data surprisingly well, predicting the
temperature, luminosity, and occultation of the X-ray emitting plasma with
rotation phase.Comment: 52 pages, 14 figures (1 color), 6 tables. To appear in the
Astrophysical Journal, 1 August 2005, v628, issue 2. New version corrects
e-mail address, figure and table formatting problem
Resolving the Circumstellar Environment of the Galactic B[e] Supergiant Star MWC 137 from Large to Small Scales
The Galactic object MWC 137 has been suggested to belong to the group of B[e] supergiants. However, with its large-scale optical bipolar ring nebula and high-velocity jet and knots, it is a rather atypical representative of this class. We performed multiwavelength observations spreading from the optical to the radio regimes. Based on optical imaging and long-slit spectroscopic data, we found that the northern parts of the large-scale nebula are predominantly blueshifted, while the southern regions appear mostly redshifted. We developed a geometrical model consisting of two double cones. Although various observational features can be approximated with such a scenario, the observed velocity pattern is more complex. Using near-infrared integral-field unit spectroscopy, we studied the hot molecular gas in the vicinity of the star. The emission from the hot CO gas arises in a small-scale disk revolving around the star on Keplerian orbits. Although the disk itself cannot be spatially resolved, its emission is reflected by the dust arranged in arc-like structures and the clumps surrounding MWC 137 on small scales. In the radio regime, we mapped the cold molecular gas in the outskirts of the optical nebula. We found that large amounts of cool molecular gas and warm dust embrace the optical nebula in the east, south, and west. No cold gas or dust was detected in the north and northwestern regions. Despite the new insights into the nebula kinematics gained from our studies, the real formation scenario of the large-scale nebula remains an open issue.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La PlataInstituto Argentino de Radioastronomí
A spectro-polarimetric study of the planet-hosting G dwarf, HD 147513
The results from a spectro-polarimetric study of the planet-hosting Sun-like star, HD 147513 (G5V), are presented here. Robust detections of Zeeman signatures at all observed epochs indicate a surface magnetic field, with longitudinal magnetic field strengths varying between 1.0–3.2 G. Radial velocity variations from night to night modulate on a similar timescale to the longitudinal magnetic field measurements. These variations are therefore likely due to the rotational modulation of stellar active regions rather than the much longer timescale of the planetary orbit (Porb = 528 d). Both the longitudinal magnetic field measurements and radial velocity variations are consistent with a rotation period of 10 ± 2 days, which are also consistent with the measured chromospheric activity level of the star (′log R′HK = -4.64). Together, these quantities indicate a low inclination angle, i ~ 18°. We present preliminary magnetic field maps of the star based on the above period and find a simple poloidal large-scale field. Chemical analyses of the star have revealed that it is likely to have undergone a barium-enrichment phase in its evolution because of a higher mass companion. Despite this, our study reveals that the star has a fairly typical activity level for its rotation period and spectral type. Future studies will enable us to explore the long-term evolution of the field, as well as to measure the stellar rotation period, with greater accuracy.Publisher PDFPeer reviewe
Resolving the Circumstellar Environment of the Galactic B[e] Supergiant Star MWC 137 from Large to Small Scales
The Galactic object MWC 137 has been suggested to belong to the group of B[e] supergiants. However, with its large-scale optical bipolar ring nebula and high-velocity jet and knots, it is a rather atypical representative of this class. We performed multiwavelength observations spreading from the optical to the radio regimes. Based on optical imaging and long-slit spectroscopic data, we found that the northern parts of the large-scale nebula are predominantly blueshifted, while the southern regions appear mostly redshifted. We developed a geometrical model consisting of two double cones. Although various observational features can be approximated with such a scenario, the observed velocity pattern is more complex. Using near-infrared integral-field unit spectroscopy, we studied the hot molecular gas in the vicinity of the star. The emission from the hot CO gas arises in a small-scale disk revolving around the star on Keplerian orbits. Although the disk itself cannot be spatially resolved, its emission is reflected by the dust arranged in arc-like structures and the clumps surrounding MWC 137 on small scales. In the radio regime, we mapped the cold molecular gas in the outskirts of the optical nebula. We found that large amounts of cool molecular gas and warm dust embrace the optical nebula in the east, south, and west. No cold gas or dust was detected in the north and northwestern regions. Despite the new insights into the nebula kinematics gained from our studies, the real formation scenario of the large-scale nebula remains an open issue.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La PlataInstituto Argentino de Radioastronomí
The Magnetism in Massive Stars (MiMeS) project: First HARPSpol discoveries
International audienc
The Magnetism in Massive Stars (MiMeS) project: First HARPSpol discoveries
International audienc
The Magnetism in Massive Stars (MiMeS) project: First HARPSpol discoveries
International audienc