43 research outputs found

    Antifungal effect of Polar and non polar extracts of Aframomum Sceptrum on Two Isolates of Oil Palm

    Get PDF
    In different parts of the world, attention is being paid to exploitation of higher plants as biodegradable fungicides in the control of most plant pathogenic fungi. Different spices of the Zingiberaceae family have been tested for their antifungal properties, but there exists little or no information on the antifungal potential of a particular member of that family; Aframomum sceptrum on fungal pathogens of some economic important palms in Nigeria. In this study, the phytochemical composition of the seed extracts of this spice was analyzed by standard methods while the antifungal activities of polar and non polar extracts of the spice was tested on two major isolates affecting the Oil palm, Fusarium oxysporum f.sp elaeidis and Hypocrea lixii (IMI 501885) Cold extraction using Acetone, Ethanol, Hexane, Methanol, and Diethylether solvents were used in the seed extract preparation. The broad spectrum fungicide, Mancozeb (80% wettable powder) was used as the positive control while the negative control was Dimethyl sulphoxide. The Dimethyl sulphoxide was also used to reconstitute the solvent extracts by dissolving the extracts and fungicides in appropriate amount of 15 % (v/v) to obtain a concentration of 0.0624g/ml. The phytochemical screening revealed the presence of the following phytochemicals in different quantities; Alkaloids, Terpenoids, Anthraquinones, Flavonoids Tanins, Saponins. Results obtained showed that all the extracts had a significantly higher antifungal effect (p< 0.05) than the broad spectrum fungicide, Mancozeb at 2000ppm. Non polar hexane seed extract had the highest percentage inhibition of 60.26% on Hypocrea lixii (IMI 501885 while the Polar ethanolic extracts with a percentage inhibition of 52.73 % on Fusarium f.sp elaeidis. Amongst all the extracts used in this study, the seed extracts that gave a low percentage inhibition of 42.45% was the non –polar acetone seed extract on Fusarium oxysporum fsp. elaeidis and methanol extract on H .lixii with the least percentage inhibition of 42.31%. The implications of these findings are discussed.Keywords: Oil palm, Antifungal, Phytochemical, DMSO, Pathogen

    High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations

    Get PDF
    Cassava (Manihot esculenta Crantz) is a major staple crop in Africa, Asia, and South America, and its starchy roots provide nourishment for 800 million people worldwide. Although native to South America, cassava was brought to Africa 400–500 years ago and is now widely cultivated across sub-Saharan Africa, but it is subject to biotic and abiotic stresses. To assist in the rapid identification of markers for pathogen resistance and crop traits, and to accelerate breeding programs, we generated a framework map for M. esculenta Crantz from reduced representation sequencing [genotyping-by-sequencing (GBS)]. The composite 2412-cM map integrates 10 biparental maps (comprising 3480 meioses) and organizes 22,403 genetic markers on 18 chromosomes, in agreement with the observed karyotype. We used the map to anchor 71.9% of the draft genome assembly and 90.7% of the predicted protein-coding genes. The chromosome-anchored genome sequence will be useful for breeding improvement by assisting in the rapid identification of markers linked to important traits, and in providing a framework for genomic selectionenhanced breeding of this important crop.Bill and Melinda Gates Foundation (BMGF) Grant OPPGD1493. University of Arizona. CGIAR Research Program on Roots, Tubers, and Bananas. Next Generation Cassava Breeding grant OPP1048542 from BMGF and the United Kingdom Department for International Development. BMGF grant OPPGD1016 to IITA. National Institutes of Health S10 Instrumentation Grants S10RR029668 and S10RR027303.http://www.g3journal.orghb201

    Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria.

    Get PDF
    Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the SARS-CoV-2 B.1.1.318 and B.1.525 (Eta) variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave in Nigeria emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Data from this study show how regional connectivity of Nigeria drove the spread of these variants of interest to surrounding countries and those connected by air-traffic. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission, as bidirectional transmission within and between African nations are grossly underestimated as seen in our import risk index estimates

    Genome-wide association study identifies human genetic variants associated with fatal outcome from Lassa fever

    Get PDF
    Infection with Lassa virus (LASV) can cause Lassa fever, a haemorrhagic illness with an estimated fatality rate of 29.7%, but causes no or mild symptoms in many individuals. Here, to investigate whether human genetic variation underlies the heterogeneity of LASV infection, we carried out genome-wide association studies (GWAS) as well as seroprevalence surveys, human leukocyte antigen typing and high-throughput variant functional characterization assays. We analysed Lassa fever susceptibility and fatal outcomes in 533 cases of Lassa fever and 1,986 population controls recruited over a 7 year period in Nigeria and Sierra Leone. We detected genome-wide significant variant associations with Lassa fever fatal outcomes near GRM7 and LIF in the Nigerian cohort. We also show that a haplotype bearing signatures of positive selection and overlapping LARGE1, a required LASV entry factor, is associated with decreased risk of Lassa fever in the Nigerian cohort but not in the Sierra Leone cohort. Overall, we identified variants and genes that may impact the risk of severe Lassa fever, demonstrating how GWAS can provide insight into viral pathogenesis

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Bulked segregant analysis identifies molecular markers associated with early bulking in cassava (Manihot esculenta Crantz)

    No full text
    Late root bulking is a major factor leading to rejection and abandoning of improved cassava genotypes in sub-Saharan Africa. Early bulking (EB) varieties shorten the growth period from planting to harvesting, better fit into environments with short rainy season, and reduce exposure to biotic and abiotic stresses thereby increasing productivity. This study was carried out to identify molecular markers linked to EB in cassava. Nine cassava hybrid populations (COB-1–COB-9) were developed using six elite varieties (TMS 30572, TMS 97/2205, TMS 98/0505, TMS 30555, NR 8212 and NR 8083) from the African cassava germplasm as parents. The progeny in each of the nine populations (101–272 genotypes per population) were evaluated for EB at 7 months after planting at seedling, clonal, and preliminary stages of breeding evaluation at Umudike. The parameters measured are fresh root yield, harvest index, fresh shoot weight and number of storage roots per plant. The progeny in each of the nine populations were genotyped at 542 simple sequence repeat (SSR) marker loci. Bulked segregant analysis was used to identify the SSR markers associated with EB in the populations. Nine SSR markers (SSRY 106, (ESTs)SSRY 292, SSRY 239, (ESTs)SSRY 7, NS 194, (ESTs)SSRY 47, SSRY 63, SSRY 250, and NS 323) were found to be closely linked (r = 0.3–0.5; p < 0.05) to EB in six of the nine hybrid populations. Seven of the markers with 10 % or more coefficient of determination (R2) were linked to major quantitative trait loci associated with EB in cassava. The molecular markers identified in this study provide useful materials to select for EB in cassava and for further target-traits-improvement by pyramiding
    corecore