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ABSTRACT Cassava (Manihot esculenta Crantz) is a major staple crop in Africa, Asia, and South America,
and its starchy roots provide nourishment for 800 million people worldwide. Although native to South
America, cassava was brought to Africa 400–500 years ago and is now widely cultivated across sub-Saharan
Africa, but it is subject to biotic and abiotic stresses. To assist in the rapid identification of markers for
pathogen resistance and crop traits, and to accelerate breeding programs, we generated a framework map
for M. esculenta Crantz from reduced representation sequencing [genotyping-by-sequencing (GBS)]. The
composite 2412-cM map integrates 10 biparental maps (comprising 3480 meioses) and organizes 22,403
genetic markers on 18 chromosomes, in agreement with the observed karyotype. We used the map to
anchor 71.9% of the draft genome assembly and 90.7% of the predicted protein-coding genes. The
chromosome-anchored genome sequence will be useful for breeding improvement by assisting in the rapid
identification of markers linked to important traits, and in providing a framework for genomic selection-
enhanced breeding of this important crop.
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Cassava (Manihot esculenta Crantz) is cultivated as a staple in much
of Africa, South America, and Asia because it is easy to grow with
limited inputs (Howeler et al. 2013). Smallholder farmers typically
grow cassava in plots of a hectare or less. Its starchy roots can be left
in the ground until they are needed, making cassava an excellent food
security crop. Because cassava can be clonally propagated, desirable
varieties can be genetically fixed immediately and multiplied for dis-
tribution. The crop is relatively drought-tolerant, and therefore likely
robust to climate change. Cassava is also grown for industrial starch
production and biofuel applications, particularly in Southeast Asia
(Howeler et al. 2013).

Despite its advantages, cassava faces several biotic and abiotic
challenges. Clonal propagation facilitates the rapid spread of bacterial

and viral diseases. Furthermore, roots of most farmer-preferred
varieties are nutrient-poor and deteriorate rapidly after harvest,
preventing farmers from generating income from the sale of excess
crop.

The use of modern genetic and genomic techniques, such as
quantitative trait locus (QTL) mapping, genomic selection, genome-
wide association studies (GWAS), and genetic engineering, can
accelerate the pace of disease resistance locus identification and trait
improvement. However, these require a high-quality genome assem-
bly and a dense genetic map. A draft cassava genome assembly was
generated and covers 532.5 Mb (69%) of the estimated 770 Mb
cassava genome (Awoleye et al. 1994). This assembly captures half of
the genome sequence in the 487 largest scaffolds, all longer than 258
kb, and 90% of the assembly is accounted for in 2654 scaffolds all
longer than 23 kb; however, these are not linked to chromosomes
(Prochnik et al. 2012). To date, a number of genetic maps have been
generated for cassava using different marker systems: restriction frag-
ment length polymorphism (RFLP), random amplified polymor-
phic DNA (RAPD), microsatellite, and isoenzyme (Fregene et al.
1997); simple sequence repeat (SSR) (Okogbenin et al. 2006); am-
plified fragment length polymorphism (AFLP) and SSR (Kunkeaw
et al. 2010); expressed sequence tag (EST) and EST-SSR (Sraphet
et al. 2011); SSR and EST-derived single nucleotide polymorphism
(SNP) (Rabbi et al. 2012); and GBS-SNP (Rabbi et al. 2014a,b).
These maps have low marker resolution and/or do not resolve
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a complete set of linkage groups (LGs) representative of the 2n = 36
karyotype of cassava (De Carvalho and Guerra 2002). Furthermore,
the densest GBS-derived SNP map anchors only 313.3 Mb (58.7%)
of the reference genome assembly (Rabbi et al. 2014b). Because there
are many cassava breeding programs, working with varying acces-
sions and trait(s) of interest, a broadly useful genetic map should
include markers that segregate in diverse populations.

A single biparental cassava cross rarely yields enough progeny to
make a dense map and, in any event, would only capture markers
from a small sample of haplotypes segregating in the species. We
therefore merged 10 maps derived from diverse parents to produce
a composite genetic map. To generate such a composite map, we
obtained one S1 and nine F1 populations (14 parents total) from
African cassava breeding projects. Markers were generated via GBS
(Elshire et al. 2011) and a map was constructed from each of the 10
crosses with JoinMap (Van Ooijen 2011). These maps were merged
with LPmerge (Endelman and Plomion 2014) to generate a 2412-cM
genetic map comprising 18 LGs, in agreement with the number of
chromosomes found cytogenetically (De Carvalho and Guerra 2002).
Furthermore, 71.9% of the genome assembly was anchored to the
genetic map. The resulting chromosome-scale assembly will accelerate
the application of a wide variety of modern tools for crop improvement.

MATERIALS AND METHODS

Generation of mapping populations
Nine biparental (F1) crosses and one self-pollinated (S1) cross were
performed (Table 1). Biparental populations NxA, KAR, NCAR, MT,
NDLAR, and ARAL were generated from crossing blocks planted in
four locations in Tanzania: Naliendele [10�239 S, 40�099 E, altitude
�137 m above sea level (ASL)], Kibaha (6�469 S, 38�589 E, �162 m
ASL), Ukiriguru (2�4392399 S, 33�193999 E, 1229 m ASL), and Maruku
(1�2495599 S; 31�4694899 E, 1340 m ASL). Populations 412·425,
MP4, and MP5 were generated at the IITA crossing sites in Nigeria.
Pedigrees of parents are shown in Supporting Information, Table S2.
Cassava stakes for planting were obtained from research stations or
farmers’ fields. For populations developed in Tanzania (with the
exception of ARAL), more than 4000 hand pollinations were per-
formed according to Kawano (1980). More than 10,000 seeds were

generated with more than 1000 seeds per population except for
population MT. After 3 months, seeds were sown in trays and raised
in a screen house for 1 month before transplanting into the field at
Makutupora research station in Dodoma, Tanzania. Poor germina-
tion rates resulted in a total of approximately 3500 seedlings, with
further losses incurred during field establishment.

For the TMEB419 S1 cross, cassava stakes for planting were
derived from the NRCRI cassava breeding experimental plots and
planted at a hybridization plot at Ubiaja, Nigeria. Up to 5000 hand
pollinations were performed by selfing the same variety, using it as
both male and female parents but with flowers and pollen from
different plants. Approximately 800 seeds were generated. Seeds were
sown in trays and raised in a screen house for 1 month before
transplanting into the field at NRCRI Umudike experimental field in
Nigeria. Poor germination rates resulted in a total of approximately
200 seedlings, with further losses incurred during field establishment.

DNA isolation
Genomic DNA was isolated from the F1 populations according to
Dellaporta et al. (1983), with some modifications to allow for process-
ing of many samples in parallel in small volumes. DNA was extracted
from population TMEB419-S1 using the DNeasy Plant Mini Kit
(Qiagen) following manufacturer protocol. In all cases, young apical
leaves were first freeze-dried and then ground using a GenoGrinder
beadmill at 1500 strokes/min for 2 min. The NxA, KAR, NCAR, MT,
NDLAR, and ARAL populations were initially screened as described
by Kawuki et al. (2013), with approximately 12 SSR markers that were
polymorphic among the parents, to detect off-types and selfs. These
were removed from the population prior to GBS. Additional off-types,
half-sibs, and selfs were later detected by GBS and removed from
mapping populations (see below).

Genotyping-by-sequencing library preparation
and sequencing
GBS library construction was performed at the University of
California, Berkeley (UC Berkeley) using a protocol adapted from
Elshire et al. (2011). The restriction enzyme ApeKI [New England
Biolabs (NEB)] was used in conjunction with the barcode sequences
included in the Elshire article. Differences from their protocol

n Table 1 Mapping populations used in this study

Population Female Parent Male Parent
Cross
Type

No. of Individuals
Sequenced

No. of Validated
Progeny

Purpose of Cross
(Segregating Traits)

ARALa AR40-6 Albert F1 154 129 CBSD and green mite resistance
KARa Kiroba AR37-80 F1 192 132 CBSD and green mite resistance
MP4b TMS-IBA30001 TMS-IBA961089A F1 190 177 Starch, dry matter content,

CMD resistance, and root rot
MP5 b TMS-IBA961089A TMS-IBA30001 F1 187 162 Starch, dry matter content,

CMD resistance, and root rot
MTa Mkombozi Unknown F1 157 135 CBSD resistance
NCARa Nachinyaya AR37-80 F1 240 233 CBSD and green mite resistance
NDLARa NDL06/132 AR37-80 F1 247 244 CBSD and green mite resistance
NxAa Namikonga Albert F1 303 256 CBSD resistance
TMEB419-S1c TMEB419 TMEB419 S1 149 117 Starch content
412·425b TMS-IBA4(2)1425 TMS-IBA011412 F1 177 155 Root carotenoid content,

CMD resistance

Nine biparental (F1) and one self-pollinated (S1) populations were generated in which a variety of disease and agronomic traits were segregating. After sequencing,
individuals that were not full sibs and/or had insufficient read depth for accurate variant calling were removed prior to map construction. CBSD, cassava brown streak
disease; CMD, cassava mosaic disease.
a
Ferguson laboratory, International Institute of Tropical Agriculture (IITA) Nairobi, Kenya.

b
Rabbi laboratory, IITA Ibadan, Nigeria.

c
Egesi laboratory, National Root Crops Research Institute (NRCRI) Umudike, Nigeria.
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following protocol optimization are described below and discussed
further in the Results and Discussion section.

Y-shaped adapters were designed based on the Y-shaped Illumina
DNA paired-end (PE) adapters (Illumina, Inc.; Figure S1). “Forward”
adapter oligos had the sequence 59 ACACTCTTTCCCTACACGAC
GCTCTTCCGATCTxxxx, and “reverse” oligos had the sequence 59
CWGyyyyAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG;
where xxxx represents the 4- to 8-bp barcode and yyyy represents
its reverse complement. CWG is the ApeKI-specific overhang. Re-
verse oligos were phosphorylated at the 59 end. Adapters were or-
dered from IDT as a “primer premix plate,” with standard desalting,
in a total volume of 50 ml with each oligo at a concentration of 200 mM.
Adapters were annealed at 50 mM in TE using a thermocycler: 95�
4 min, ramp270� at 0.1�/5 sec, 25� 5 min, hold at 4�. Annealing was
confirmed by running adapters on a 4% agarose gel next to single-
stranded oligos of similar length, as annealed adapters run at a larger
size. Annealed adapters were diluted 1:10 and then to 12 ng/ml in
TE, and finally to 1.25 ng/ml in 10 mM Tris pH 8. Adapter volumes
for the last two dilutions were based on quantitation with Picogreen
reagent (Invitrogen) and an FLx800 microplate reader (Biotek
Instruments, Inc.).

Libraries comprised 63–96 samples. Sample DNA quantitation was
performed with Picogreen. Typically, DNA samples were diluted in
water to approximately 20 ng/ml and re-quantitated before library
preparation. Digests were performed on a 96-well plate, and each
consisted of 100 ng DNA in 20 ml 1· NEBuffer #3 (NEB) with 5 U
ApeKI. Three microliters of the desired pre-annealed and diluted
adapter was added to each well of digested DNA, followed by ligation
mix containing 720 cohesive end units T4 DNA ligase and 5 ml T4
DNA Ligase Reaction Buffer (NEB), to a final ligation volume of
50 ml. Ligations were pooled such that each offspring sample contrib-
uted an equal amount of DNA. For parental DNA samples, to ensure
adequate sequence coverage, a greater amount of digested/ligated
DNA was added to the pool. Pools contained a total amount of
1–2 mg DNA and were purified and concentrated using the MinElute
PCR Purification Kit (Qiagen).

Size selection was performed on pooled libraries using a 2%
agarose gel run at 140 V. A size fraction of 400–800 bp was excised
from the gel and purified via the MinElute Gel Extraction Kit
(Qiagen), melting the gel at room temperature to avoid G-C bias
(Quail et al. 2008). Most libraries were amplified with five PCR
cycles using Phusion polymerase (NEB), 460 ng of each PCR primer,
and an extension time of 45 sec. After PCR amplification, libraries
were cleaned using 0.7 volumes AMPure XP SPRI beads (Beckman

Coulter, Inc.). Size distributions of Illumina libraries were assayed by
the Vincent J. Coates Genomic Sequencing Laboratory (VCGSL) at
UC Berkeley using a 2100 Bioanalyzer (Agilent Technologies, Inc.).
Library concentrations were determined by the VCGSL using a Qubit
(Life Technologies) and quantitative PCR. Quantitative PCR was
performed with Kapa Biosystems’ Illumina Library Quantification
Kits and Roche LightCycler 480, following all kit protocols. One
hundred–basepair paired-end sequencing was performed by the
VCGSL on HiSeq 2000 or 2500 instruments (Illumina, Inc.). Some
libraries were sequenced more than once, usually because the first run
was suboptimal. Sequence read totals for each population are given in
Table 2.

Genotype calling and filtering
GBS data were analyzed by pipelining several widely used sequence
analysis tools with custom scripts to extract markers with parental
genotype combinations useful for the cross-pollinated (CP) genetic
mapping strategy implemented by JoinMap (v4.1 2013, July 11
release) (Van Ooijen 2011). An outline of the pipeline is shown in
Figure 1, and step-by-step command-line instructions are available
at https://bitbucket.org/rokhsar-lab/gbs-analysis.

To ensure high-quality data for genetic map estimation, the raw
read data were trimmed of adapter sequences with the fastq-mcf tool
from the ea-utils package (Aronesty 2011), demultiplexed with an
allowance of one mismatch in the barcode sequence using a custom
script, and then base-quality–trimmed (Q = 28) and aligned to the
cassava v4.1 draft genome assembly using BWA (Li and Durbin 2009).
Variants and genotypes were called using the HaplotypeCaller tool
from the GATK (v2.7-2) (McKenna et al. 2010) with a minimum
mapping quality threshold of 25. Because map estimation software
can be sensitive to excessive missing data and genotyping error, ge-
notypes with quality scores and read depths less than 30 and 10·,
respectively, were marked as missing data and sites with more than
20% missing genotypes were discarded. To avoid spurious genotype
calls within repeat regions, sites with average depth more than approx-
imately 120 reads per individual or with log10(GATKHaplotypeScore+1)
values more than 0.5 were removed. A maximum log10(GATK
HaplotypeScore+1) value of 1.0 was enforced for the ARAL and
412·425 populations because they had been sequenced more deeply.

Further filtering removed individuals with insufficient data or half-
sib, off-type, or (for biparental crosses) self-pollinated individuals (see
below). The chi-squared P value for F1 Mendelian ratios was then
calculated for each variant site, and sites with P, 0.05 were discarded.
Parental genotypes were then inferred from the segregation pattern of

n Table 2 Sequence reads and variability

Population Name Total Reads Average no. of reads/barcode Coefficient of Variation

ARAL 1,004,686,146 6,440,295 0.3689
KAR 913,517,846 3,713,487 0.3669
MP4 734,460,036 3,672,300 0.6334
MP5 735,540,482 3,733,708 0.7023
MT 609,010,716 3,421,408 0.7470
NCAR 1,076,417,780 4,375,682 0.3830
NDLAR 1,329,433,056 5,113,204 0.3741
NxA 1,189,124,090 3,823,550 0.4403
TMEB419-S1 693,520,182 4,532,811 0.3051
412·425 1,183,937,274 6,399,660 0.5171
Total or average 9,406,878,938 3,770,292 0.4853

Summary statistics are shown for the 10 mapping populations used in this study. The coefficient of variation for a given
population is an average of libraries sequenced for that population. The total (for reads) or average (for average reads per
barcode and coefficient of variation) are shown on the last line (bold).
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each marker in the progeny and this information was used to impute
missing parental genotypes in either parent. Markers were then grouped
into nonoverlapping 50-kb bins and one marker of each segregating
type (i.e., lm · ll, nn · np, hk · hk, ef · eg, and ab · cd) with the most
genotyped individuals was chosen to represent each bin.

Identification of off-types, half-sibs, and selfs in
the progeny
Cassava farmers prefer to grow several varieties in a field at one time,
and this often leads to volunteer seedlings and, hence, genetic
variability within nominally clonally propagated cassava. This can
create spurious genetic variation within varieties used to generate
populations. We therefore checked the progeny from each biparental
mapping population for the presence of off-types, half-sibs, and selfs.
We used metrics of relatedness to determine whether a progeny was a
full-sib F1 (or S1). First, we used the frequency of genotypes violating,
or inconsistent with, the expected Mendelian patterns of segregation.
We defined this as the fraction of genotypes homozygous for
the minor/unshared parental allele (or contained nonparental alleles)
per individual. Individuals with a rate of Mendelian inconsistency in
excess of 0.005 at a minimum genotype quality of 30 were discarded
(Figure 2A).

Second, a bivariate clustering analysis was performed with the
Mclust (v4.2) R package using as the similarity measure the kinship
coefficient phi calculated by vcftools (v0.1.12) (Manichaikul et al.
2010; Danecek et al. 2011; Fraley et al. 2012; R Core Team 2014).
Values of phi were calculated between all individuals and the putative
parents, with each parent constituting an axis of potential genetic
contribution (Figure 2B). Mclust calculates the optimal number of
clusters under a Bayesian Information Criterion (BIC) regime for
a given set of candidate multivariate Gaussian mixture models, the
parameters for which are estimated via the Expectation-Maximization
algorithm. Individuals are then classified into clusters by choosing the
maximum conditional probability among the Gaussian distributions
of the chosen mixture model (Fraley et al. 2012). Individuals belong-
ing to a single cluster, or several overlapping clusters, near (X,Y) =
(0.25,0.25) were kept for downstream analysis. We performed a uni-

variate analysis of the S1 population data because Mclust assumes that
the two variables of the bivariate normal distribution do not have
covariance near unity, and performing a bivariate analysis on an S1
population would violate this assumption.

Calculating genetic maps for single populations
A genetic map was produced for each mapping population using
JoinMap software to estimate linkage, map order, and distance. To
make mapping calculations more tractable, only one marker was
retained from a set of markers at the same genetic position and
individuals with more than 50% missing data were removed. For
each population, the minimum LOD threshold for grouping was
determined by identifying grouping tree branches with stable marker
numbers over increasing consecutive LOD values. Groups with three
or more markers at the chosen minimum LOD threshold were
retained for mapping. Specific LOD thresholds applied to each map
are available in Table 3. Marker order and distances were determined
using JoinMap’s Maximum Likelihood mapping algorithm for cross-
pollinated (CP) populations. Default mapping parameters were as-
sumed with the following modifications: spatial sampling thresholds
reduced to 0.050, 0.025, 0.015, 0.010, and 0.005, and the number of
Monte Carlo EM cycles increased to a value of 7. Maps were then
compared with each other as a check for internal consistency (see
next section) and genetically redundant markers that had been re-
moved earlier were reincorporated into the component maps by
assigning each marker to the LG and genetic position of the marker
that was physically closest to it. The scaffolds in the draft assembly
were used to determine physical distance. Finally, each map was
converted from Haldane to Kosambi map units prior to merging.

Quality control of component maps
Maps containing inter-marker genetic distances of 50 cM or greater
were remapped with increased simulated annealing chain length and
stopping chains. This process was iterated until maps no longer
contained such distances or JoinMap ran out of memory. If these
distances could not be removed before memory failure, then in-
dividual markers near the interval with extreme values of “Nearest
Neighbor Fit” (a measure reported by JoinMap to indicate the com-
patibility of one marker between two flanking markers) were removed
by trial and error (recalculating the genetic map after each iteration)
(removed markers are listed in File S1). If this failed to fix the gap,
then the LG was split manually into two sets of parent-specific
markers (i.e., lm · ll and nn · np). Separate linkage maps were
calculated for each parent using the methods described above.
Single-parent maps that broke at the location of the initial marker
gap were included for merging.

The relative correspondences and orientations of component LGs
between populations were determined by examining dot plots,
plotting the genetic positions of markers between pairs of maps
(Figure 3). LGs were split or joined by following majority rule of the
set of cognate LGs. For example, a component LG sharing markers
with two LGs in each of the other component maps was split; multiple
smaller LGs in one component map sharing markers with a single LG
in each of the other component maps were joined. In joining, an
interval was inserted equal to the average genetic distance found in
the other corresponding component groups.

Merging maps with LPmerge
We chose the ARAL map to be the reference for numbering and
orienting LGs during merging (Table S1) because it was deeply

Figure 1 Data analysis pipeline used in this study. Using a combination
of publicly available and custom tools (gray text), the pipeline starts
with sequence data and generates a map for each population (Pop)
through a series of analyses (white text on blue). Finally, the maps are
merged using LPmerge to generate a single composite map (Endelman
and Plomion 2014).
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sequenced, and this map had the best agreement between genetic and
physical marker order. The initial numbering of LGs followed that
produced by JoinMap. As described above (Figure 3), a set of corre-
sponding LGs and orientations was constructed for each of the 18

chromosomes in cassava. Each of these sets of corresponding LGs was
merged into a composite map with LPmerge v1.4 (Endelman and
Plomion 2014), with maps being weighted by population size.
LPmerge was run 10 times with the maximum interval parameter
set to each of the values in the range 1–10. We then chose the merged
map with the value of maximum interval that gave the shortest total
composite map length, as described in the documentation for
LPmerge. For most LGs, the value of maximum interval was 1
(Table S1).

Each merged map was plotted along with all its component maps
on a plot of marker number against genetic map distance. We noticed
that markers at the end of some LGs (Figure S2) were tens of cM
distant from adjacent markers. These markers were found to be pres-
ent in only one contributing map and were distorting the merged map
distances calculated by LPmerge. To fix this, terminal markers from
single contributing maps were removed and another round of merg-
ing with LPmerge was performed. This process was repeated until
there were no singleton markers at the end of a LG.

Correcting scaffolding mis-assemblies
Mapped markers from all 10 maps were considered simultaneously.
Scaffolds from the v4.1 assembly (Prochnik et al. 2012) containing
markers that mapped to different LGs were broken as long as the
markers on the different LGs were derived from at least two maps
or there were at least two markers from a single map. Mean pairwise
linkage disequilibrium (LD) r2 statistics (Purcell et al. 2007) were
calculated using vcftools (Danecek et al. 2011) for all variants derived
from putatively mis-assembled scaffolds. Scaffolds were broken at
scaffolding gaps within each region flanked by markers of different
LG assignments if no evidence of LD was observed. If multiple scaf-
folding (i.e., sequence) gaps existed between flanking markers, then
the gap with the fewest supporting mate-pairs used for scaffolding the
v4.1 assembly was broken. If multiple, equally supported gaps existed,
then the scaffold was broken at the largest gap. Minority markers from
unbroken candidate mis-assembled scaffolds were removed.

Scaffold anchoring and orienting
After breaking mis-assembled scaffolds, the v4.1 genome assembly
was anchored to the genetic map and joined with 1000 Ns to produce
pseudomolecules. Scaffold order was determined by median genetic
position and orientation by the sign of Kendall’s rank correlation
coefficient (tau) between physical and genetic positions. Scaffolds that
could not be assigned to any LG (due to ambiguity in grouping or lack
of markers) were not incorporated into the pseudomolecules and
retained their original identifiers from the v4.1 assembly. Scaffolds
that were anchored but could not be oriented were incorporated in
their original (i.e., arbitrary) orientations. The LGs were then ordered
by decreasing genetic size and numbered with Roman numerals to
provide a canonical nomenclature (Figure 4).

RESULTS AND DISCUSSION
To produce a robust and dense genetic map that can be used to follow
traits segregating in diverse mapping populations, we generated 10
mapping populations (Table 1) and genotyped them using a modified
GBS approach (Elshire et al. 2011). We were stringent in selecting
markers to both mitigate the effects of missing data inherent in a GBS
approach and to ensure that variants were segregating in a Mendelian
fashion. We then generated 10 independent genetic maps from these
populations. Comparison between them allowed us to identify cases
where the standard map estimation approach was unable to resolve
consistent LGs, and reconciling these differences produced a highly

Figure 2 Analysis of parentage and sibling relationships. (A) The fraction
of non-Mendelian genotypes detected in each individual in a population is
plotted as a function of the minimum genotype quality (GQ) threshold. Off-
types can be detected by a consistently high rate of Mendelian violation
(black dotted lines), while, for legitimate progeny (solid gray), the non-
Mendelian genotype rate is consistently lower than that of the putative
parents (solid black lines). (B) A bivariate clustering analysis was performed
on each population to verify parentage and full-sibling relationships. In this
plot, we show the ARAL population as an example. Pairwise kinship
coefficients phi are calculated between progeny and parents (Manichaikul
et al. 2010). Each putative progeny is represented as a point in two-
dimensional space colored by its cluster assignment: full-sib F1 progeny
are in red and S1 progeny of AR40-6 (therefore unrelated to Albert) are in
green; individuals consistent with being progeny from a full sib of Albert
crossed to AR40-6 are in purple; individuals consistent with being the
progeny from an S1 of AR40-6 being crossed to Albert are in blue.
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concordant set of maps. After constructing maps using a reduced set
of stringently selected markers, we reintroduced genetically redundant
markers into the maps, and these individual component maps were
then integrated into a single composite framework map with the
expected 18 LGs. Finally, we used this map to organize the v4.1 draft
cassava genome sequence (Prochnik et al. 2012) into 18 pseudomolecules,
anchoring 90.7% of the predicted genes onto LGs.

Mapping populations
We analyzed nine F1 and one S1 mapping populations derived from
14 diverse cultivated varieties of cassava segregating for agriculturally
important traits (Table 1). One population included here was recently
used for a QTL analysis for cassava mosaic disease (CMD) resistance
(Rabbi et al. 2014b). Due to their desirable agricultural properties,
some cultivars were used as parents in multiple crosses. Six popula-
tions from the Ferguson group at IITA were selected specifically for
segregation of resistance to cassava brown streak disease. Several of
these parents have a known wild species component in their pedigree
(Table S2).

Reduced representation sequencing
Several groups have developed inexpensive methods for generating
a reduced representation of a genome with a restriction enzyme and
sequencing to obtain genotypes (genotyping-by-sequencing or GBS)
(Altshuler et al. 2000; Baird et al. 2008; Davey et al. 2011; Elshire et al.
2011). To generate mapping markers in cassava, we adapted the GBS
approach of Elshire et al. (2011) (Materials and Methods). We used Y-
shaped GBS adapters to ensure that all pieces of DNA with adapter
ligated to both ends could cluster and be sequenced. Because the same
barcode was added to both ends of the DNA extracted from a given
individual (Figure S1), checking for the identity of barcodes from both
ends provided additional quality control. To save time, we dispensed
with the DNA and adapter drying step before digestion. To allow for
robust ligation, we phosphorylated the “reverse” oligos of our adapters
at the 59 end (Materials and Methods, Figure S1); although this can
increase the number of adapter dimers, these dimers are effectively
removed by size selection as noted below. To maximize the number of
DNA fragments that are ligated to adapters, we used adapters in
excess. This also prevents the formation of DNA concatemers, which
would confound downstream analysis of reads. To increase the accu-
racy of mapping reads to the genome, the probability of detecting
variation adjacent to a cut site, and the amount of data, we performed
100-bp paired-end sequencing, rather than the single-end 86-bp se-
quencing of Elshire et al. (2011).

During protocol optimization, we found that a gel-based size
selection step led to more robust amplification of the desired size
fraction. Fragments of sizes 400–800 bp cluster well on the flow cell
but are unlikely to contain adapter-mers. A gel-based size selection
also provides for modularity in the GBS approach: excising a narrower
size range from the gel can be a simple way to sample fewer sites in the
genome if fewer markers or more depth per site are needed, and/or to
facilitate multiplexing more samples per lane. In the PCR, we used
Phusion polymerase rather than Taq to minimize error, and we found
that increasing the amount of PCR primer yielded more amplified
library. We reduced the number of PCR cycles to five to reduce bias
that can interfere with accurate variant calling. The 0.7· ratio of SPRI
beads to DNA removes fragments less than 300 bp in length (Quail
et al. 2008; Lennon et al. 2010), and thus effectively removes any
remaining adapter-mers and excess PCR primer (neither of which
are detected in appreciable amounts by Bioanalyzer on completed
libraries).

Genotyping-by-sequencing performance in cassava
Our adapted GBS protocol makes use of the ApeKI restriction enzyme
used in the protocol developed by Elshire et al. (2011) and recom-
mended by Hamblin & Rabbi (2014) for cassava. This enzyme and our
method of library preparation allowed us to sample, per population,
an estimated 85.5k restriction cut sites (with 10 reads or more) dis-
tributed throughout the genome on 5900 scaffolds (approximately 173
cut sites/Mbp) and sampling approximately 42k variable loci. Multi-
plexing up to 96 samples per lane of sequencing was effective for our
outbred populations: we obtained an average of approximately
3.7 million reads per individual in a typical 96-plex sequencing run.

Genotype calling, filtering, and quality control
We genotyped all individuals against the currently available v4.1 draft
cassava genome assembly with the GATK (Mckenna et al. 2010).
Based on an examination of the relationship between minimum ge-
notype quality (GQ) threshold and the rate of violation of Mendelian
segregation, we set a minimum GQ of 30, which effectively filtered
low-confidence genotype calls (Figure 2A). In addition, we removed
44 individuals with excessive genotyping error or in which the pattern
of marker segregation was inconsistent with that expected in an F1 or
S1 population.

Because botanical seed-based fecundity is low in cassava, gener-
ating large mapping populations often requires crossing multiple
cloned parental genotypes over an extended period of time, increasing

n Table 3 Mapping parameters and statistics

Population No. of Markers No. of framework markers LOD Threshold LGs

ARAL 6765 3657 13.0 21
KAR 3047 1952 8.0 19
MP4 3392 1903 6.0 19
MP5 3388 1803 6.0 21
MT 3991 2301 10.0 18
NCAR 5192 2894 16.0 20
NDLAR 4460 2385 12.0 20
NxA 3940 2241 15.0 18
TMEB419-S1 4340 1943 10.0 21
412·425 5942 2975 7.0 18
Composite map 22,403 NA NA 18

For each population and the composite map, we report the total number of markers and the number of markers used by
JoinMap for map estimation, the minimum LOD threshold for defining LG, and the number of LGs output from the grouping
procedure. NA, not applicable
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the likelihood of error in tracking parental or progeny genotypes. We
therefore performed a relatedness analysis (Materials and Methods) to
identify and remove individuals that were not part of the intended
cross (Figure 2B). Across the 10 populations, we found 14 individuals
that were unrelated to both parents and 68 related to only a single
parent (26 selfs, 2 clones, 40 half-sib offspring), and identified 119

additional individuals with more complex relationships not suitable
for mapping. Individuals identified by the relatedness and/or the Men-
delian violation analyses were removed from further analysis. The
number of progeny sequenced and used for map construction from
each population is listed in Table 1. In one extreme case, none of the
offspring in the MT population was related to the pollen parent that
was sequenced [putatively TMS4(2)1425] (Figure S3); furthermore,
neither these offspring nor the putative TMS4(2)1425 parent matched
the TMS4(2)1425 parent of the 412·425 population. We could, how-
ever, confirm that most members of the MT population were full sibs.
Given this fact, it was nevertheless possible to statistically infer reliable
genotypes for the true pollen parent and estimate the combined ge-
netic map for the population, as was performed for all other popula-
tions included in this study (see next section). Each population of
verified full-sib progeny was then subjected to a significance threshold
(P , 0.05) for deviation from Mendelian genotype frequencies, from
which we obtained approximately 4400 segregating sites per popula-
tion (Table 3).

Calculating genetic maps
Genetic maps were estimated for each population using the Maximum
Likelihood mapping algorithm for CP populations implemented
by JoinMap (v4.1). Forty-four (22.6%) component LGs contained
intervals 50 cM or larger that could not be corrected by increasing
the simulated annealing parameters and required manual curation. In
this curation, markers that were causing the large gaps were identified
by trial-and-error and removed. A total of 179 (out of 24,403 mapped)
markers were discarded (File S1). After this step, one LG still con-
tained a large gap. For this LG, a separate map was made from the
markers unique to each parent and the LGs split into two pieces at the
position of the gap. Subsequently, shared markers were reincorporated
based on their scaffold coordinates.

Resolving discrepancies between maps, refining maps,
and gauging accuracy
Comparing the 10 component linkage maps with each other allowed
us to identify and correct inconsistencies, including incorrectly split or
joined LGs. We were able to verify long-range colinearity as the
median number of markers shared between any two maps was 793
(quartiles Q1 = 656 and Q3 = 983), or approximately 44 per LG
(Figure 3A). Occasionally, the dot plot pattern of a LG was “V”-shaped
(Figure 3B), indicating inconsistent marker order in one of the maps.
Because we could compare 10 independently constructed maps with
each other, it was straightforward to identify those specific maps that
differed from the consensus. In all but two cases (see below), the
discrepant “V”-shaped dot plots were resolved into colinear relation-
ships simply by extending the simulated annealing in JoinMap. Thus,
comparison among the various maps allowed us to identify cases
where JoinMap had not yet converged to a final marker ordering,
and to ultimately reach consistent convergence relative to other maps.

Most LGs had a one-to-one correspondence with an LG in each of
the other populations. However, in a total of 11 cases, this was not true
and we used a majority rule approach to decide whether the
component LGs should be split (two cases) or joined (nine cases).
In one additional case, the decision to break or join was ambiguous,
because five populations each contained two LGs that together
corresponded to single LGs in the other five populations. We resolved
this ambiguity by jointly examining the dot plots for the two-LG
component maps against a corresponding single-LG map. From this,
we discovered that none of the breaks in the different two-LG
component maps occurred at the same genetic position. It is therefore

Figure 3 Pairwise comparison of single population maps. (A) An
example of a pairwise comparison between maps. Every marker is
plotted at a position corresponding to its genetic distance in each map
(for shared markers) or along the axis (for markers unique to one map).
Shared markers reveal the correspondences and relative orientations
between LGs produced by JoinMap (arbitrarily numbered). Runs of
shared markers appearing as approximately straight, continuous lines
demonstrate marker orders consistent between the two maps; a
positive or negative gradient indicates identical or opposite orienta-
tion, respectively, in the two maps. In addition, LGs to be joined or
split are revealed, respectively, as multiple unusually small LGs in one
map corresponding to a single LG in another map (NCAR LG 3, and
KAR LGs 13 and 14) and as a single unusually large LG in one map
corresponding to multiple LGs in the other (NCAR LGs 7 and 9, and
KAR LG 1). (B) An example of a “V”-shaped dot plot pattern, typically
observed in LGs, that required (and could be corrected with) JoinMap
parameters that increased the sensitivity (see Materials and Methods).
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likely that the LGs should be joined in the two-LG component maps
to generate single LGs. Finally, three component LGs were not
included in the merging because they could not be resolved into a map
with a linear relationship with the corresponding LG from the other
maps, and four were discarded because, although they could be
matched with LGs in other maps, they contained too few markers to
be confidently oriented.

Comparing maps with one another using dot plots provides a visual
measure of internal consistency, whereas accuracy of marker order may
be estimated by comparison to the physical sequence. We calculated
Kendall’s rank correlation coefficient (tau) between physical and genetic
positions on scaffolds that contained 10 or more markers and were not
broken (described below). Across all maps and scaffolds examined, the
median value tau was 0.84 (quartiles Q1 = 0.748 and Q3 = 0.908),
indicating good agreement between physical and genetic positions.

Reincorporation of genetically redundant markers
To more fully represent the genetic diversity found within the
mapping populations, 8418 markers that had been excluded earlier
based on their genetic redundancy (Materials and Methods) were
reincorporated into the composite map. By creating datasets with
the redundant markers included before and after map integration,
and then by comparing their median Kendall’s rank correlation coef-
ficients tau (for 46 scaffolds with 50 or more markers, totaling 64.5
Mb of sequence), we found that including the redundant markers
prior to map integration increased the marker order accuracy (tau =
0.765 vs. tau = 0.726). This improvement arises because the same
genetically redundant marker is not always chosen to represent its
genetic position in all component maps, and reincorporating redun-
dant such markers increases the number of marker order constraints
used by LPmerge (Endelman and Plomion 2014) when a marker order
conflict is encountered during map integration.

An integrated framework map
With the exception of the three LGs noted above, the component
maps were colinear with each other (Figure 3A). We next combined
them into a single composite map. We merged genetic maps by
finding shared markers between individual maps. Ideally, all shared
markers would be colinear, but in many situations discrepancies
needed to be resolved. Sometimes these discrepancies could be due
to rearrangements in the genome of one of the parents, but most often
they are due to inaccurate genetic distances between markers because
of insufficient recombinations, the stochastic nature of recombination,
and errors introduced in individual map construction by missing and/or
erroneous marker data. We used LPmerge (Endelman and Plomion
2014) to generate a composite map from the 10 component maps we
had generated because it merges maps without recalculating recom-
bination frequencies, drastically reducing the computational time
required. LPmerge generates a consensus map with the minimum
absolute error relative to the component maps while preserving the
marker order by imposing linear inequality constraints and deleting
a minimum number of constraints if a marker order conflict is ob-
served (Endelman and Plomion 2014).

Combining maps from multiple independent crosses has the
advantage of increasing the genetic diversity that is captured in the
map, increasing support for marker order and position, and allowing
markers from a single map to be placed relative to other markers.
Composite maps have been generated from six Diversity Array
Technology [DArT]-based and RFLP-based maps for sorghum (Mace
et al. 2009), six SSR-based maps for pigeonpea (Bohra et al. 2012), and
11 SSR-based maps for groundnut (Gautami et al. 2012), but, to our
knowledge, no attempt has been made to integrate this many GBS-SNP–
based genetic maps.

After merging, we noticed that markers at the ends of LGs that
belonged to a single map were placed on the merged map tens of cM

Figure 4 Marker distribution in the composite map.
The scale on the left shows the map distance in cM.
Our composite map consists of 18 LGs with a marker
density of 1.95 nonredundant markers per cM.
Previous maps did not recapitulate 18 LGs with a
clear one-to-onemapping to our map, so we adopted
a Roman numeral numbering system, ordered by de-
creasing genetic size.
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from their neighbors (Figure S2). To improve the merging, we re-
moved terminal markers belonging to a single map and repeated the
merging until no further singleton markers remained. This removed
a total of 182 markers (Table S1) to generate a 2412-cM map con-
taining 22,403 markers, averaging 134 cM and 1245 markers per LG
(Table 4, File S2). The SNP density (�9 SNPs per cM) is substantially
higher than that of the previous densest map (mean inter-SNP dis-
tance = 0.52 cM) (Rabbi et al. 2014b), although this straightforward
statistic does not account for the fact that many of the markers are
genetically redundant (Table 4). For the first time, a cassava genetic
map recapitulates the coherent set of 18 LGs matching the cassava
chromosomes (Figure 4).

We observed a steady increase (albeit with diminishing returns) in
the number of markers and amount of assembled sequence that can
be placed as a function of the number of mapping populations that
were used (Figure 5). We note, however, that even with the addition of
the tenth component map, we were still adding markers and anchor-
ing more genome sequence (Figure 5), an observation that may be of
interest to scientists building genetic maps for diverse plants. Future
work will merge additional maps to take advantage of this feature.
However, because the majority of markers were present in only one
map (12,474 out of 22,403), they may be placed inaccurately in the
merged map because they are only constrained by a single component
map. This will be improved by the generation of a less fragmented
genome assembly.

All maps were, to a large extent, colinear with the integrated
framework map (Figure S4); however, component LGs from NxA (e.g.,
Chromosome II; Figure S4B) as well as 412·425 (e.g., Chromosome
XVII; Figure S4Q) displayed notable divergence from this, likely
because these maps were of lower quality. Finally, across the whole
genome, we observed four gaps larger than 10 cM (terminal portion
of Chromosome V; two on Chromosome III and one on Chromo-
some VIII). These could be recombination hotspots or regions that
are identical-by-descent and thus lack polymorphisms.

Generation of chromosome pseudomolecules
One of our goals was to organize the fragmented draft genome assembly
(Prochnik et al. 2012) into chromosome-scale sequence; therefore, it was
necessary to first detect possible discrepancies between the genetic map
and physical sequence. Of the 1347 scaffolds that contained multiple
markers (median size = 174 kb), 41 scaffolds contained markers along
their lengths that mapped to different LGs. Because all component maps
used to generate the composite map were internally consistent, these
discrepancies were unlikely to be due to errors in the genetic map and
suggested a sequence mis-assembly in the scaffolds in question. Manual
review, along with the aid of linkage disequilibrium and scaffolding in-
formation, allowed us to break likely misjoins where weak scaffolding
linkages had been made, often in regions with a high density of scaf-
folding gaps. After breaking, we then organized the sequence assembly
into pseudomolecules by anchoring the scaffolds onto LGs using their
median genetic position. The resulting chromosome-scale sequences in-
corporate 1608 scaffolds and 382 Mb (71.9%) of the v4.1 draft genome
sequence (Table 4). This includes 462 (94.9%) of the N50 scaffolds, 1430
(53.9%) of the N90 scaffolds, and 27,825 (90.7%) of the 30,666 predicted
protein-coding genes. Of the scaffolds anchored onto the assembly, we
could also orient 1024 (63.7%) of them by calculating the Kendall rank
correlation coefficient tau between physical and genetic positions. To-
gether, these oriented scaffolds comprise 315 Mb of sequence.

Concluding remarks
Here, we present a consensus genetic map of cassava that combines 10
mapping populations. Unlike many previous maps (Fregene et al.
1997; Okogbenin et al. 2006; Kunkeaw et al. 2010; Sraphet et al.
2011; Rabbi et al. 2012, 2014a,b), we recovered the 18 LGs predicted
by the karyotype of M. esculenta (De Carvalho and Guerra 2002) and
at the same time dramatically increased the number of markers to more
than 22,400. The majority of genes in the current draft genome were
placed on a LG and at their approximate chromosomal position,
resulting in the first chromosome-scale assembly of cassava and a

n Table 4 Linkage groups in the composite map

Chromosome (LG)
No. of
Markers

Length
(cM)

Average Marker
Density

(markers/cM)

Maximum Inter-marker
Distance (cM)

No. of Scaffolds
Anchored

No. of Bases
Anchored

I 2323 164.78 2.72 3.63 90 26,714,966
II 1366 164.22 2.40 7.85 81 24,343,195
III 1326 155.60 2.04 5.97 116 22,858,152
IV 1459 148.73 1.64 18.41 93 21,649,806
V 1330 146.87 1.57 6.12 81 23,125,959
VI 1462 144.73 2.56 3.42 79 22,319,908
VII 848 141.96 1.65 6.73 88 18,888,952
VIII 1212 137.48 2.01 7.21 111 23,111,533
IX 1207 137.35 1.68 6.01 92 20,667,830
X 1011 133.31 2.03 5.58 95 20,387,986
XI 1330 132.16 2.12 2.56 96 20,727,479
XII 863 128.85 1.30 10.09 103 22,667,256
XIII 865 125.09 1.89 4.92 107 20,100,115
XIV 1346 120.26 1.48 11.74 88 17,859,824
XV 1548 117.89 2.54 2.56 72 20,107,995
XVI 920 117.13 1.56 5.71 75 18,834,636
XVII 974 104.95 1.71 7.48 95 20,464,108
XVIII 1013 90.99 2.41 8.46 90 17,820,998
Total 22,403 2412.35 35.31 124.45 1652 382,650,698
Average 1245 134.02 1.96 6.91 91.78 21,258,372

The number of markers and genetic distances are shown for the 18 LGs. The average marker density is calculated for genetically nonredundant markers only, i.e., only
one marker at a given genetic position was included.
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map that will serve as a valuable guide for future genome assembly
improvements. Our approach can be readily extended to include
future mapping populations, although, as seen here, care must be
taken to explore discrepancies between biparental or selfed maps
that may arise from mistaken parentage, missing or erroneous data,
and the details of map construction. Using multiple maps at the
same time allows such individual component map problems to be
identified and corrected (or excluded from merger).

Within the context of disease threat, climate change and food
insecurity, improving cassava for smallholder farmers in developing
countries is becoming more urgent. A number of projects and
collaborations are already engaged in this task. These initiatives are
rapidly incorporating modern genetic tools and techniques such as
genomic selection and QTL analysis, techniques that depend on an
accurate genetic map and genome assembly. The chromosome-scale
genome sequence and composite map we report here will allow

Figure 5 Additional maps incorporate more markers, scaffolds, and anchored bases. These plots show the effects of adding maps to the
framework map. Each additional map incorporates more genetically nonredundant markers (A) into the framework map, but the number of
scaffolds incorporated is saturating (B) and the number of mapped bases (C) is reaching a plateau. This is because the scaffolds being added in
later maps are getting smaller and smaller and, hence, adding ever fewer bases.
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cassava geneticists and breeders to generate the robust cassava
varieties needed both for food security and to improve the economic
conditions of smallholder farmers around the world.

ADDITIONAL INFORMATION
The composite genetic map is available in File S2, and at CassavaBase
(http://cassavabase.org/cview/map.pl?map_id=3). The pseudomolecule as-
sembly can be downloaded from Phytozome at http://genome.jgi.doe.gov/
pages/dynamicOrganismDownload.jsf?organism=Mesculenta under the
directory “v5.1_unreleased”. Demultiplexed sequence reads, with the
barcode and ApeKI cutsite removed, are available in the NCBI Se-
quence Read Archive (http://www.ncbi.nlm.nih.gov/sra) via Study
Accession Number SRP051207.
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