28 research outputs found

    Single-cell transcriptome atlas of Drosophila gastrula 2.0

    Get PDF
    ショウジョウバエ原腸胚における1細胞遺伝子発現アトラスを作成 --ゲノム情報による発生制御の解明に向けた基盤的リソース--. 京都大学プレスリリース. 2023-07-11.During development, positional information directs cells to specific fates, leading them to differentiate with their own transcriptomes and express specific behaviors and functions. However, the mechanisms underlying these processes in a genome-wide view remain ambiguous, partly because the single-cell transcriptomic data of early developing embryos containing accurate spatial and lineage information are still lacking. Here, we report a single-cell transcriptome atlas of Drosophila gastrulae, divided into 77 transcriptomically distinct clusters. We find that the expression profiles of plasma-membrane-related genes, but not those of transcription-factor genes, represent each germ layer, supporting the nonequivalent contribution of each transcription-factor mRNA level to effector gene expression profiles at the transcriptome level. We also reconstruct the spatial expression patterns of all genes at the single-cell stripe level as the smallest unit. This atlas is an important resource for the genome-wide understanding of the mechanisms by which genes cooperatively orchestrate Drosophila gastrulation

    VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification

    Get PDF
    Neutrophils kill microbes with reactive oxygen species generated by the NADPH oxidase, an enzyme which moves electrons across membranes. Voltage-gated proton channels (voltage-sensing domain only protein [VSOP]/Hv1) are required for high-level superoxide production by phagocytes, but the mechanism of this effect is not established. We show that neutrophils from VSOP/Hv1−/− mice lack proton currents but have normal electron currents, indicating that these cells have a fully functional oxidase that cannot conduct protons. VSOP/Hv1−/− neutrophils had a more acidic cytosol, were more depolarized, and produced less superoxide and hydrogen peroxide than neutrophils from wild-type mice. Hydrogen peroxide production was rescued by providing an artificial conductance with gramicidin. Loss of VSOP/Hv1 also aborted calcium responses to chemoattractants, increased neutrophil spreading, and decreased neutrophil migration. The migration defect was restored by the addition of a calcium ionophore. Our findings indicate that proton channels extrude the acid and compensate the charge generated by the oxidase, thereby sustaining calcium entry signals that control the adhesion and motility of neutrophils. Loss of proton channels thus aborts superoxide production and causes a severe signaling defect in neutrophils

    Model-based prediction of spatial gene expression via generative linear mapping

    Get PDF
    Single cell RNA-seq loses spatial information of gene expression in multicellular systems because tissue must be dissociated. Here, the authors show the spatial gene expression profiles can be both accurately and robustly reconstructed by a new computational method using a generative linear mapping, Perler

    Multimeric nature of voltage-gated proton channels

    No full text
    Voltage-gated potassium channels are comprised of four subunits, and each subunit has a pore domain and a voltage-sensing domain (VSD). The four pore domains assemble to form one single central pore, and the four individual VSDs control the gate of the pore. Recently, a family of voltage-gated proton channels, such as HV or voltage sensor only protein (VSOP), was discovered that contain a single VSD but no pore domain. It has been assumed that VSOP channels are monomeric and contain a single VSD that functions as both the VSD and the pore domain. It remains unclear, however, how a protein that contains only a VSD and no pore domain can conduct ions. Using fluorescence measurements and immunoprecipitation techniques, we show here that VSOP channels are expressed as multimeric channels. Further, FRET experiments on constructs with covalently linked subunits show that VSOP channels are dimers. Truncation of the cytoplasmic regions of VSOP reduced the dimerization, suggesting that the dimerization is caused mainly by cytoplasmic protein–protein interactions. However, these N terminus- and C terminus-deleted channels displayed large proton currents. Therefore, we conclude that even though VSOP channels are expressed mainly as dimers in the cell membrane, single VSOP subunits could function independently as proton channels
    corecore