3 research outputs found

    The effect of mixtures of Bacillus thuringiensis-based insecticide and multiple nucleopolyhedrovirus of Lymantria dispar L. in combination with an optical brightener on L. dispar larvae

    No full text
    This study evaluated the efficacy of the commercially available insecticide Lepidocide based on Bacillus thuringiensis var. kurstaki and Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) and their combination with an optical brightener to control L. dispar L. Efficacy against both second and fourth instar L. dispar larvae was evaluated, and the type of interaction between the tested components was determined using second instar L. dispar larvae. Most combinations of Lepidocide and LdMNPV containing a 5 mg ml(-1) optical brightener had synergistic effects, and their mixtures were most effective in reducing the number of second instar larvae. In contrast, mixtures containing Lepidocide and LdMNPV with an optical brightener caused significantly lower mortality of fourth instar L. dispar larvae than mixtures without Lepidocide. This result suggests that an increased concentration of Lepidocide in a mixture containing LdMNPV and an optical brightener leads to an antagonistic effect on insect mortality. The possible reasons for the differences in the observed effects of the components on the second and fourth instar L. dispar larvae may be associated with the resistance of fourth-instar larvae to the antifeedant effect of B. thuringiensis

    Integrated airborne investigation of the air composition over the Russian sector of the Arctic

    No full text
    International audienceThe change of the global climate is most pronounced in the Arctic, where the air temperature increases 2 to 3 times faster than the global average. This process is associated with an increase in the concentration of greenhouse gases in the atmosphere. There are publications predicting the sharp increase in methane emissions into the atmosphere due to permafrost thawing. Therefore, it is important to study how the air composition in the Arctic changes in the changing climate. In the Russian sector of the Arctic, the air composition was measured only in the surface atmospheric layer at the coastal stations or earlier at the drifting stations. Vertical distributions of gas constituents of the atmosphere and aerosol were determined only in a few small regions. That is why the integrated experiment was carried out to measure the composition of the troposphere in the entire Russian sector of the Arctic from on board the Optik Tu-134 aircraft laboratory in the period of ​​​​​​​4 to 17 September of 2020. The aircraft laboratory was equipped with contact and remote measurement facilities. The contact facilities were capable of measuring the concentrations of CO2, CH4, O3, CO, NOx​​​​​​​, and SO2, as well as the disperse composition of particles in the size range from 3 nm to 32 µm, black carbon, and organic and inorganic components of atmospheric aerosol. The remote facilities were operated to measure the water transparency in the upper layer of the ocean, the chlorophyll content in water, and spectral characteristics of the underlying surface. The measured data have shown that the ocean continues absorbing CO2. This process is most intense over the Barents and Kara seas. The recorded methane concentration was increased over all the Arctic seas, reaching 2090 ppb in the near-water layer over the Kara Sea. The contents of other gas components and black carbon were close to the background level.In bioaerosol, bacteria predominated among the identified microorganisms. In most samples, they were represented by coccal forms, less often spore-forming and non-spore-bearing rod-shaped bacteria. No dependence of the representation of various bacterial genera on the height and the sampling site was revealed. The most turbid during the experiment was the upper layer of the Chukchi and Bering seas. The Barents Sea turned out to be the most transparent. The differences in extinction varied by more than a factor of 1.5. In all measurements, except for the Barents Sea, the tendency of an increase in chlorophyll fluorescence in more transparent waters was observed

    Integrated airborne investigation of the air composition over the Russian Sector of the Arctic

    No full text
    International audienceThe change of the global climate is most pronounced in the Arctic, where the air temperature increases two to three times faster than the global average. This process is associated with an increase in the concentration of greenhouse gases in the atmosphere. There are publications predicting the sharp increase of methane emissions into the atmosphere due to permafrost thawing. Therefore, it is important to study how the air composition in the Arctic changes in the changing climate. In the Russian sector of the Arctic, the air composition was measured only in the surface atmospheric layer at the coastal stations or earlier at the drifting stations. Vertical distributions of gas constituents of the atmosphere and aerosol were determined only in few small regions. That is why the integrated experiment was carried out to measure the composition of the troposphere in the entire Russian sector of the Arctic from onboard the Optik Tu-134 aircraft laboratory in the period of September 4 to 17 of 2020. The aircraft laboratory was equipped with contact and remote measurement facilities. The contact facilities were capable of measuring the concentrations of CO2, CH4, O3, CO, NOX, and SO2, as well as the disperse composition of particles in the size range from 3 nm to 32 µm, black carbon, organic and inorganic components of atmospheric aerosol. The remote facilities were operated to measure the water transparency in the upper layer of the ocean, the chlorophyll content in water, and spectral characteristics of the underlying surface. The measured data have shown that the ocean continues absorbing СО2. This process is most intense over the Barents and Kara Seas. The recorded methan
    corecore