19 research outputs found

    Mild gestational diabetes in pregnancy and the adipoinsular axis in babies born to mothers in the ACHOIS randomised controlled trial

    Get PDF
    BACKGROUND: Mild gestational diabetes is a common complication of pregnancy, affecting up to 9% of pregnant women. Treatment of mild GDM is known to reduce adverse perinatal outcomes such as macrosomia and associated birth injuries, such as shoulder dystocia, bone fractures and nerve palsies. This study aimed to compare the plasma glucose concentrations and serum insulin, leptin and adiponectin in cord blood of babies of women (a) without gestational diabetes mellitus (GDM), (b) with mild GDM under routine care, or (c) mild GDM with treatment. METHODS: 95 women with mild GDM on oral glucose tolerance testing (OGTT) at one tertiary level maternity hospital who had been recruited to the ACHOIS trial at one of the collaborating hospitals and randomised to either Treatment (n = 46) or Routine Care (n = 49) and Control women with a normal OGTT (n = 133) were included in the study. Women with mild GDM (treatment or routine care group) and OGTT normal women received routine pregnancy care. In addition, women with treated mild GDM received dietary advice, blood glucose monitoring and insulin if necessary. The primary outcome measures were cord blood concentrations of glucose, insulin, adiponectin and leptin. RESULTS: Cord plasma glucose was higher in women receiving routine care compared with control, but was normalized by treatment for mild GDM (p = 0.01). Cord serum insulin and insulin to glucose ratio were similar between the three groups. Leptin concentration in cord serum was lower in GDM treated women compared with routine care (p = 0.02) and not different to control (p = 0.11). Adiponectin was lower in both mild GDM groups compared with control (Treatment p = 0.02 and Routine Care p = 0.07), while the adiponectin to leptin ratio was lower for women receiving routine care compared with treatment (p = 0.08) and control (p = 0.05). CONCLUSION: Treatment of women with mild GDM using diet, blood glucose monitoring and insulin if necessary, influences the altered fetal adipoinsular axis characteristic of mild GDM in pregnancy

    Gestational Diabetes Is Characterized by Reduced Mitochondrial Protein Expression and Altered Calcium Signaling Proteins in Skeletal Muscle

    Get PDF
    The rising prevalence of gestational diabetes mellitus (GDM) affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM) and obese pregnant women with normal glucose tolerance (ONGT). Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I) subunits (NDUFS3, NDUFV2) and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4) in OGDM (n = 6) vs. ONGT (n = 6). Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (−60–75%) in the OGDM (n = 8) compared with ONGT (n = 10) subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum

    Intrauterine Growth Retarded Progeny of Pregnant Sows Fed High Protein:Low Carbohydrate Diet Is Related to Metabolic Energy Deficit

    Get PDF
    High and low protein diets fed to pregnant adolescent sows led to intrauterine growth retardation (IUGR). To explore underlying mechanisms, sow plasma metabolite and hormone concentrations were analyzed during different pregnancy stages and correlated with litter weight (LW) at birth, sow body weight and back fat thickness. Sows were fed diets with low (6.5%, LP), adequate (12.1%, AP), and high (30%, HP) protein levels, made isoenergetic by adjusted carbohydrate content. At −5, 24, 66, and 108 days post coitum (dpc) fasted blood was collected. At 92 dpc, diurnal metabolic profiles were determined. Fasted serum urea and plasma glucagon were higher due to the HP diet. High density lipoprotein cholesterol (HDLC), %HDLC and cortisol were reduced in HP compared with AP sows. Lowest concentrations were observed for serum urea and protein, plasma insulin-like growth factor-I, low density lipoprotein cholesterol, and progesterone in LP compared with AP and HP sows. Fasted plasma glucose, insulin and leptin concentrations were unchanged. Diurnal metabolic profiles showed lower glucose in HP sows whereas non-esterified fatty acids (NEFA) concentrations were higher in HP compared with AP and LP sows. In HP and LP sows, urea concentrations were 300% and 60% of AP sows, respectively. Plasma total cholesterol was higher in LP than in AP and HP sows. In AP sows, LW correlated positively with insulin and insulin/glucose and negatively with glucagon/insulin at 66 dpc, whereas in HP sows LW associated positively with NEFA. In conclusion, IUGR in sows fed high protein∶low carbohydrate diet was probably due to glucose and energy deficit whereas in sows with low protein∶high carbohydrate diet it was possibly a response to a deficit of indispensable amino acids which impaired lipoprotein metabolism and favored maternal lipid disposal
    corecore