146 research outputs found

    Hypovitaminosis D is associated with negative outcome in dogs with protein losing enteropathy: a retrospective study of 43 cases

    Get PDF
    Abstract Background Hypovitaminosis D has previously been shown to be prevalent amongst dogs with protein losing enteropathy (PLE). The hypothesis of this study was that Low 25-hydroxyvitamin D (25(OH) D) serum concentrations could be a risk factor for negative outcome in dogs with PLE. Forty-three dogs diagnosed with PLE (2005–2014) and which serum Vitamin D serum concentrations were collected and archived at −80 Degrees C were analyzed. Post-diagnostic communication with referring veterinarians was made to determine outcome of PLE dogss: Dogs which died due to PLE within 4 months after diagnosis (negative outcome group, n = 22) and dogs alive or which died due to another disease at the end point of the study (1 year after diagnosis, good outcome group, n = 21). Serum samples taken at the time of diagnosis were analysed for ionized calcium (iCa) concentrations and serum 25(OH) D concentration. Results Clinical (CCECAI) scores, age at PLE diagnosis, and iCa concentrations were not significantly different between dog groups. A significantly greater (p < 0.001) number of PLE dogs treated with hydrolyzed or elimination diet alone showed good outcome as compared to the PLE negative outcome group. Median serum 25(OH) D concentration was significantly (p = 0.017) lower in dogs with negative outcome versus PLE dogs with good outcome. Using logistic regression analysis, 25(OH) D serum concentration was shown to be a statistically significant factor for outcome determination. Cox regression analysis yielded a hazard ratio of 0.974 (95% CI 0.949, 0.999) per each one nmol/l increase in serum 25(OH) D concentration. Conclusions Low serum 25(OH) D concentration in PLE dogs was significantly associated with poor outcome. Further studies are required to investigate the clinical efficacy of Vitamin D (cholecalciferol) as a potential therapeutic agent for dogs with PLE

    Single nucleotide variations in CLCN6 identified in patients with benign partial epilepsies in infancy and/or febrile seizures

    Get PDF
    Nucleotide alterations in the gene encoding proline-rich transmembrane protein 2 (PRRT2) have been identified in most patients with benign partial epilepsies in infancy (BPEI)/benign familial infantile epilepsy (BFIE). However, not all patients harbor these PRRT2 mutations, indicating the involvement of genes other than PRRT2. In this study, we performed whole exome sequencing analysis for a large family affected with PRRT2-unrelated BPEI. We identified a non-synonymous single nucleotide variation (SNV) in the voltage-sensitive chloride channel 6 gene (CLCN6). A cohort study of 48 BPEI patients without PRRT2 mutations revealed a different CLCN6 SNV in a patient, his sibling and his father who had a history of febrile seizures (FS) but not BPEI. Another study of 48 patients with FS identified an additional SNV in CLCN6. Chloride channels (CLCs) are involved in a multitude of physiologic processes and some members of the CLC family have been linked to inherited diseases. However, a phenotypic correlation has not been confirmed for CLCN6. Although we could not detect significant biological effects linked to the identified CLCN6 SNVs, further studies should investigate potential CLCN6 variants that may underlie the genetic susceptibility to convulsive disorders.Toshiyuki Yamamoto, Keiko Shimojima, Noriko Sangu, Yuta Komoike, Atsushi Ishii, Shinpei Abe, Shintaro Yamashita, Katsumi Imai, Tetsuo Kubota, Tatsuya Fukasawa, Tohru Okanishi, Hideo Enoki, Takuya Tanabe, Akira Saito, Toru Furukawa, Toshiaki Shimizu, Carol J. Milligan, Steven Petrou, Sarah E. Heron, Leanne M. Dibbens, Shinichi Hirose, Akihisa Okumur

    Global Diversity of Brittle Stars (Echinodermata: Ophiuroidea)

    Get PDF
    This review presents a comprehensive overview of the current status regarding the global diversity of the echinoderm class Ophiuroidea, focussing on taxonomy and distribution patterns, with brief introduction to their anatomy, biology, phylogeny, and palaeontological history. A glossary of terms is provided. Species names and taxonomic decisions have been extracted from the literature and compiled in The World Ophiuroidea Database, part of the World Register of Marine Species (WoRMS). Ophiuroidea, with 2064 known species, are the largest class of Echinodermata. A table presents 16 families with numbers of genera and species. The largest are Amphiuridae (467), Ophiuridae (344 species) and Ophiacanthidae (319 species). A biogeographic analysis for all world oceans and all accepted species was performed, based on published distribution records. Approximately similar numbers of species were recorded from the shelf (n = 1313) and bathyal depth strata (1297). The Indo-Pacific region had the highest species richness overall (825 species) and at all depths. Adjacent regions were also relatively species rich, including the North Pacific (398), South Pacific (355) and Indian (316) due to the presence of many Indo-Pacific species that partially extended into these regions. A secondary region of enhanced species richness was found in the West Atlantic (335). Regions of relatively low species richness include the Arctic (73 species), East Atlantic (118), South America (124) and Antarctic (126)

    OKANISHI, M. & FUJITA, T. (2011) Two new species of the subgenus Asteroporpa (Astromoana) (Ophiuroidea: Euryalida: Gorgonocephalidae) from Japan. Zootaxa, 2751, 25-39.

    No full text
    Okanishi, M., Fujita, T. (2011): OKANISHI, M. &amp; FUJITA, T. (2011) Two new species of the subgenus Asteroporpa (Astromoana) (Ophiuroidea: Euryalida: Gorgonocephalidae) from Japan. Zootaxa, 2751, 25-39. Zootaxa 2890 (1): 68, DOI: 10.11646/zootaxa.2890.1.7, URL: http://dx.doi.org/10.11646/zootaxa.2890.1.

    Chemotherapeutic Activity of Bluensomycin

    No full text
    • …
    corecore