330 research outputs found

    Clathrin Is Spindle-Associated but Not Essential for Mitosis

    Get PDF
    Clathrin is a multimeric protein involved in vesicle coat assembly. Recently clathrin distribution was reported to change during the cell cycle and was found to associate with the mitotic spindle. Here we test whether the recruitment of clathrin to the spindle is indicative of a critical functional contribution to mitosis.Previously a chicken pre-B lymphoma cell line (DKO-R) was developed in which the endogenous clathrin heavy chain alleles were replaced with the human clathrin heavy chain under the control of a tetracycline-regulatable promoter. Receptor-mediated and fluid-phase endocytosis were significantly inhibited in this line following clathrin knockout, and we used this to explore the significance of clathrin heavy chain expression for cell cycle progression. We confirmed using confocal microscopy that clathrin colocalised with tubulin at mitotic spindles. Using a propidium iodide flow cytometric assay we found no statistical difference in the cell cycle distribution of the knockout cells versus the wild-type. Additionally, we showed that the ploidy and the recovery kinetics following cell cycle arrest with nocodazole were unchanged by repressing clathrin heavy chain expression.We conclude that the association of clathrin with the mitotic spindle and the contribution of clathrin to endocytosis are evolutionarily conserved. However we find that the contribution of clathrin to mitosis is less robust and dependent on cellular context. In other cell-lines silencing RNA has been used by others to knockdown clathrin expression resulting in an increase in the mitotic index of the cells. We show an effect on the G2/M phase population of clathrin knockdown in HEK293 cells but show that repressing clathrin expression in the DKO-R cell-line has no effect on the size of this population. Consequently this work highlights the need for a more detailed molecular understanding of the recruitment and function of clathrin at the spindle, since the localisation but not the impact of clathrin on mitosis appears to be robust in plants, mammalian and chicken B-cells

    The Long March: A Sample Preparation Technique that Enhances Contig Length and Coverage by High-Throughput Short-Read Sequencing

    Get PDF
    High-throughput short-read technologies have revolutionized DNA sequencing by drastically reducing the cost per base of sequencing information. Despite producing gigabases of sequence per run, these technologies still present obstacles in resequencing and de novo assembly applications due to biased or insufficient target sequence coverage. We present here a simple sample preparation method termed the “long march” that increases both contig lengths and target sequence coverage using high-throughput short-read technologies. By incorporating a Type IIS restriction enzyme recognition motif into the sequencing primer adapter, successive rounds of restriction enzyme cleavage and adapter ligation produce a set of nested sub-libraries from the initial amplicon library. Sequence reads from these sub-libraries are offset from each other with enough overlap to aid assembly and contig extension. We demonstrate the utility of the long march in resequencing of the Plasmodium falciparum transcriptome, where the number of genomic bases covered was increased by 39%, as well as in metagenomic analysis of a serum sample from a patient with hepatitis B virus (HBV)-related acute liver failure, where the number of HBV bases covered was increased by 42%. We also offer a theoretical optimization of the long march for de novo sequence assembly

    The Cytosolic Tail of the Golgi Apyrase Ynd1 Mediates E4orf4-Induced Toxicity in Saccharomyces cerevisiae

    Get PDF
    The adenovirus E4 open reading frame 4 (E4orf4) protein contributes to regulation of the progression of virus infection. When expressed individually, E4orf4 was shown to induce non-classical transformed cell-specific apoptosis in mammalian cells. At least some of the mechanisms underlying E4orf4-induced toxicity are conserved from yeast to mammals, including the requirement for an interaction of E4orf4 with protein phosphatase 2A (PP2A). A genetic screen in yeast revealed that the Golgi apyrase Ynd1 associates with E4orf4 and contributes to E4orf4-induced toxicity, independently of Ynd1 apyrase activity. Ynd1 and PP2A were shown to contribute additively to E4orf4-induced toxicity in yeast, and to interact genetically and physically. A mammalian orthologue of Ynd1 was shown to bind E4orf4 in mammalian cells, confirming the evolutionary conservation of this interaction. Here, we use mutation analysis to identify the cytosolic tail of Ynd1 as the protein domain required for mediation of the E4orf4 toxic signal and for the interaction with E4orf4. We also show that E4orf4 associates with cellular membranes in yeast and is localized at their cytoplasmic face. However, E4orf4 is membrane-associated even in the absence of Ynd1, suggesting that additional membrane proteins may mediate E4orf4 localization. Based on our results and on a previous report describing a collection of Ynd1 protein partners, we propose that the Ynd1 cytoplasmic tail acts as a scaffold, interacting with a multi-protein complex, whose targeting by E4orf4 leads to cell death

    Lithium Impacts on the Amplitude and Period of the Molecular Circadian Clockwork

    Get PDF
    Lithium salt has been widely used in treatment of Bipolar Disorder, a mental disturbance associated with circadian rhythm disruptions. Lithium mildly but consistently lengthens circadian period of behavioural rhythms in multiple organisms. To systematically address the impacts of lithium on circadian pacemaking and the underlying mechanisms, we measured locomotor activity in mice in vivo following chronic lithium treatment, and also tracked clock protein dynamics (PER2::Luciferase) in vitro in lithium-treated tissue slices/cells. Lithium lengthens period of both the locomotor activity rhythms, as well as the molecular oscillations in the suprachiasmatic nucleus, lung tissues and fibroblast cells. In addition, we also identified significantly elevated PER2::LUC expression and oscillation amplitude in both central and peripheral pacemakers. Elevation of PER2::LUC by lithium was not associated with changes in protein stabilities of PER2, but instead with increased transcription of Per2 gene. Although lithium and GSK3 inhibition showed opposing effects on clock period, they acted in a similar fashion to up-regulate PER2 expression and oscillation amplitude. Collectively, our data have identified a novel amplitude-enhancing effect of lithium on the PER2 protein rhythms in the central and peripheral circadian clockwork, which may involve a GSK3-mediated signalling pathway. These findings may advance our understanding of the therapeutic actions of lithium in Bipolar Disorder or other psychiatric diseases that involve circadian rhythm disruptions

    Bacillus anthracis Protease InhA Increases Blood-Brain Barrier Permeability and Contributes to Cerebral Hemorrhages

    Get PDF
    Hemorrhagic meningitis is a fatal complication of anthrax, but its pathogenesis remains poorly understood. The present study examined the role of B. anthracis-secreted metalloprotease InhA on monolayer integrity and permeability of human brain microvasculature endothelial cells (HBMECs) which constitute the blood-brain barrier (BBB). Treatment of HBMECs with purified InhA resulted in a time-dependent decrease in trans-endothelial electrical resistance (TEER) accompanied by zonula occluden-1 (ZO-1) degradation. An InhA-expressing B. subtilis exhibited increased permeability of HBMECs, which did not occur with the isogenic inhA deletion mutant (ΔinhA) of B. anthracis, compared with the corresponding wild-type strain. Mice intravenously administered with purified InhA or nanoparticles-conjugated to InhA demonstrated a time-dependent Evans Blue dye extravasation, leptomeningeal thickening, leukocyte infiltration, and brain parenchymal distribution of InhA indicating BBB leakage and cerebral hemorrhage. Mice challenged with vegetative bacteria of the ΔinhA strain of B. anthracis exhibited a significant decrease in leptomeningeal thickening compared to the wildtype strain. Cumulatively, these findings indicate that InhA contributes to BBB disruption associated with anthrax meningitis through proteolytic attack on the endothelial tight junctional protein zonula occluden (ZO)-1

    HIV-1-Infected and Immune-Activated Macrophages Induce Astrocytic Differentiation of Human Cortical Neural Progenitor Cells via the STAT3 Pathway

    Get PDF
    Diminished adult neurogenesis is considered a potential mechanism in the pathogenesis of HIV-1-associated dementia (HAD). In HAD, HIV-1-infected and immune-activated brain mononuclear phagocytes (MP; perivascular macrophages and microglia) drive central nervous system (CNS) inflammation and may alter normal neurogenesis. We previously demonstrated HIV-1-infected and lipopolysaccharide (LPS) activated monocyte-derived macrophages (MDM) inhibit human neural progenitor cell (NPC) neurogenesis, while enhancing astrogliogenesis through the secretion of the inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), in vitro and in vivo. Here we further test the hypothesis that HIV-1-infected/activated MDM promote NPC astrogliogenesis via activation of the transcription factor signal transducer and activator of transcription 3 (STAT3), a critical factor for astrogliogenesis. Our results show that LPS-activated MDM-conditioned medium (LPS-MCM) and HIV-infected/LPS-activated MDM-conditioned medium (LPS+HIV-MCM) induced Janus kinase 1 (Jak1) and STAT3 activation. Induction of the Jak-STAT3 activation correlated with increased glia fibrillary acidic protein (GFAP) expression, demonstrating an induction of astrogliogenesis. Moreover, STAT3-targeting siRNA (siSTAT3) decreased MCM-induced STAT3 activation and NPC astrogliogenesis. Furthermore, inflammatory cytokines (including IL-6, IL-1β and TNF-α) produced by LPS-activated and/or HIV-1-infected MDM may contribute to MCM-induced STAT3 activation and astrocytic differentiation. These observations were confirmed in severe combined immunodeficient (SCID) mice with HIV-1 encephalitis (HIVE). In HIVE mice, siRNA control (without target sequence, sicon) pre-transfected NPCs injected with HIV-1-infected MDM showed more astrocytic differentiation and less neuronal differentiation of NPCs as compared to NPC injection alone. siSTAT3 abrogated HIV-1-infected MDM-induced astrogliogenesis of injected NPCs. Collectively, these observations demonstrate that HIV-1-infected/activated MDM induces NPC astrogliogenesis through the STAT3 pathway. This study generates important data elucidating the role of brain inflammation in neurogenesis and may provide insight into new therapeutic strategies for HAD

    The Mitotic Arrest Deficient Protein MAD2B Interacts with the Clathrin Light Chain A during Mitosis

    Get PDF
    Contains fulltext : 87811.pdf (publisher's version ) (Open Access)BACKGROUND: Although the mitotic arrest deficient protein MAD2B (MAD2L2) is thought to inhibit the anaphase promoting complex (APC) by binding to CDC20 and/or CDH1 (FZR1), its exact role in cell cycle control still remains to be established. METHODOLOGY/PRINCIPAL FINDINGS: Using a yeast two-hybrid interaction trap we identified the human clathrin light chain A (CLTA) as a novel MAD2B binding protein. A direct interaction was established in mammalian cells via GST pull-down and endogenous co-immunoprecipitation during the G2/M phase of the cell cycle. Through subsequent confocal laser scanning microscopy we found that MAD2B and CLTA co-localize at the mitotic spindle. Clathrin forms a trimeric structure, i.e., the clathrin triskelion, consisting of three heavy chains (CLTC), each with an associated light chain. This clathrin structure has previously been shown to be required for the function of the mitotic spindle through stabilization of kinetochore fibers. Upon siRNA-mediated MAD2B depletion, we found that CLTA was no longer concentrated at the mitotic spindle but, instead, diffusely distributed throughout the cell. In addition, we found a marked increase in the percentage of misaligned chromosomes. CONCLUSIONS/SIGNIFICANCE: Previously, we identified MAD2B as an interactor of the renal cell carcinoma (RCC)-associated protein PRCC. In addition, we found that fusion of PRCC with the transcription factor TFE3 in t(X;1)(p11;q21)-positive RCCs results in an impairment of this interaction and a concomitant failure to shuttle MAD2B to the nucleus. Our current data show that MAD2B interacts with CLTA during the G2/M phase of the cell cycle and that depletion of MAD2B leads to a marked increase in the percentage of misaligned chromosomes and a redistribution of CLTA during mitosis

    Overexpression of Chitinase 3-Like 1/YKL-40 in Lung-Specific IL-18-Transgenic Mice, Smokers and COPD

    Get PDF
    We analyzed the lung mRNA expression profiles of a murine model of COPD developed using a lung-specific IL-18-transgenic mouse. In this transgenic mouse, the expression of 608 genes was found to vary more than 2-fold in comparison with control WT mice, and was clustered into 4 groups. The expression of 140 genes was constitutively increased at all ages, 215 genes increased gradually with aging, 171 genes decreased gradually with aging, and 82 genes decreased temporarily at 9 weeks of age. Interestingly, the levels of mRNA for the chitinase-related genes chitinase 3-like 1 (Chi3l1), Chi3l3, and acidic mammalian chitinase (AMCase) were significantly higher in the lungs of transgenic mice than in control mice. The level of Chi3l1 protein increased significantly with aging in the lungs and sera of IL-18 transgenic, but not WT mice. Previous studies have suggested Chi3l3 and AMCase are IL-13-driven chitinase-like proteins. However, IL-13 gene deletion did not reduce the level of Chi3l1 protein in the lungs of IL-18 transgenic mice. Based on our murine model gene expression data, we analyzed the protein level of YKL-40, the human homolog of Chi3l1, in sera of smokers and COPD patients. Sixteen COPD patients had undergone high resolution computed tomography (HRCT) examination. Emphysema was assessed by using a density mask with a cutoff of −950 Hounsfield units to calculate the low-attenuation area percentage (LAA%). We observed significantly higher serum levels in samples from 28 smokers and 45 COPD patients compared to 30 non-smokers. In COPD patients, there was a significant negative correlation between serum level of YKL-40 and %FEV1. Moreover, there was a significant positive correlation between the serum levels of YKL-40 and LAA% in COPD patients. Thus our results suggest that chitinase-related genes may play an important role in establishing pulmonary inflammation and emphysematous changes in smokers and COPD patients

    Serum Calcium Levels Are Associated with Novel Cardiometabolic Risk Factors in the Population-Based CoLaus Study

    Get PDF
    BACKGROUND: Associations of serum calcium levels with the metabolic syndrome and other novel cardio-metabolic risk factors not classically included in the metabolic syndrome, such as those involved in oxidative stress, are largely unexplored. We analyzed the association of albumin-corrected serum calcium levels with conventional and non-conventional cardio-metabolic risk factors in a general adult population. METHODOLOGY/PRINCIPAL FINDINGS: The CoLaus study is a population-based study including Caucasians from Lausanne, Switzerland. The metabolic syndrome was defined using the Adult Treatment Panel III criteria. Non-conventional cardio-metabolic risk factors considered included: fat mass, leptin, LDL particle size, apolipoprotein B, fasting insulin, adiponectin, ultrasensitive CRP, serum uric acid, homocysteine, and gamma-glutamyltransferase. We used adjusted standardized multivariable regression to compare the association of each cardio-metabolic risk factor with albumin-corrected serum calcium. We assessed associations of albumin-corrected serum calcium with the cumulative number of non-conventional cardio-metabolic risk factors. We analyzed 4,231 subjects aged 35 to 75 years. Corrected serum calcium increased with both the number of the metabolic syndrome components and the number of non-conventional cardio-metabolic risk factors, independently of the metabolic syndrome and BMI. Among conventional and non-conventional cardio-metabolic risk factors, the strongest positive associations were found for factors related to oxidative stress (uric acid, homocysteine and gamma-glutamyltransferase). Adiponectin had the strongest negative association with corrected serum calcium. CONCLUSIONS/SIGNIFICANCE: Serum calcium was associated with the metabolic syndrome and with non-conventional cardio-metabolic risk factors independently of the metabolic syndrome. Associations with uric acid, homocysteine and gamma-glutamyltransferase were the strongest. These novel findings suggest that serum calcium levels may be associated with cardiovascular risk via oxidative stress
    corecore