78 research outputs found

    Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging

    Get PDF
    The eukaryotic genome is organized within cells as chromatin. For proper information output, higher-order chromatin structures can be regulated dynamically. How such structures form and behave in various cellular processes remains unclear. Here, by combining super-resolution imaging (photoactivated localization microscopy [PALM]) and single-nucleosome tracking, we developed a nuclear imaging system to visualize the higher-order structures along with their dynamics in live mammalian cells. We demonstrated that nucleosomes form compact domains with a peak diameter of ∼160 nm and move coherently in live cells. The heterochromatin-rich regions showed more domains and less movement. With cell differentiation, the domains became more apparent, with reduced dynamics. Furthermore, various perturbation experiments indicated that they are organized by a combination of factors, including cohesin and nucleosome-nucleosome interactions. Notably, we observed the domains during mitosis, suggesting that they act as building blocks of chromosomes and may serve as information units throughout the cell cycle

    Carotid artery calcification at the initiation of hemodialysis is a risk factor for cardiovascular events in patients with end-stage renal disease: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular calcification has been recognized as a risk factor for cardiovascular (CV) events in patients with end-stage renal disease (ESRD). However, the association of carotid artery calcification (CAAC) with CV events remains unknown. The aim of this study was to elucidate whether CAAC is associated with composite CV events in ESRD patients.</p> <p>Methods</p> <p>One-hundred thirty-three patients who had been started on hemodialysis between 2004 and 2008 were included in this retrospective cohort study. These patients received multi-detector computed tomography to assess CAAC at the initiation of hemodialysis. Composite CV events, including ischemic heart disease, heart failure, cerebrovascular diseases, and CV deaths after the initiation of hemodialysis, were examined in each patient.</p> <p>Results</p> <p>CAAC was found in 94 patients (71%). At the end of follow-up, composite CV events were seen in 47 patients: ischemic heart disease in 20, heart failure in 8, cerebrovascular disease in 12, and CV deaths in 7. The incidence of CAAC was 87% in patients with CV events, which was significantly higher than the rate (62%) in those without. Kaplan-Meier analysis showed a significant increase in composite CV events in patients with CAAC compared with those without CAAC (p = 0.001, log-rank test). Univariate analysis using a Cox hazards model showed that age, smoking, common carotid artery intima-media thickness and CAAC were risk factors for composite CV events. In multivariate analysis, only CAAC was a significant risk factor for composite CV events (hazard ratio, 2.85; 95% confidence interval, 1.18-8.00; p = 0.02).</p> <p>Conclusions</p> <p>CAAC is an independent risk factor for CV events in ESRD patients. The assessment of CAAC at the initiation of hemodialysis is useful for predicting the prognosis.</p

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    A Genome-Wide Association Study Identified AFF1 as a Susceptibility Locus for Systemic Lupus Eyrthematosus in Japanese

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune disease that causes multiple organ damage. Although recent genome-wide association studies (GWAS) have contributed to discovery of SLE susceptibility genes, few studies has been performed in Asian populations. Here, we report a GWAS for SLE examining 891 SLE cases and 3,384 controls and multi-stage replication studies examining 1,387 SLE cases and 28,564 controls in Japanese subjects. Considering that expression quantitative trait loci (eQTLs) have been implicated in genetic risks for autoimmune diseases, we integrated an eQTL study into the results of the GWAS. We observed enrichments of cis-eQTL positive loci among the known SLE susceptibility loci (30.8%) compared to the genome-wide SNPs (6.9%). In addition, we identified a novel association of a variant in the AF4/FMR2 family, member 1 (AFF1) gene at 4q21 with SLE susceptibility (rs340630; P = 8.3×10−9, odds ratio = 1.21). The risk A allele of rs340630 demonstrated a cis-eQTL effect on the AFF1 transcript with enhanced expression levels (P<0.05). As AFF1 transcripts were prominently expressed in CD4+ and CD19+ peripheral blood lymphocytes, up-regulation of AFF1 may cause the abnormality in these lymphocytes, leading to disease onset

    Visualizing the Interconnections Among Climate Risks

    Get PDF
    It is now widely recognized that climate change affects multiple sectors in virtually every part of the world. Impacts on one sector may influence other sectors, including seemingly remote ones, which we call “interconnections of climate risks.” While a substantial number of climate risks are identified in the Intergovernmental Panel on Climate Change Fifth Assessment Report, there have been few attempts to explore the interconnections between them in a comprehensive way. To fill this gap, we developed a methodology for visualizing climate risks and their interconnections based on a literature survey. Our visualizations highlight the need to address climate risk interconnections in impact and vulnerability studies. Our risk maps and flowcharts show how changes in climate impact natural and socioeconomic systems, ultimately affecting human security, health, and well‐being. We tested our visualization approach with potential users and identified likely benefits and issues. Our methodology can be used as a communication tool to inform decision makers, stakeholders, and the general public of the cascading risks that can be triggered by climate change

    The status of DECIGO

    Get PDF
    DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present

    DECIGO and DECIGO pathfinder

    Full text link
    corecore