1,469 research outputs found
The Hot Bang state of massless fermions
In 2002, a method has been proposed by Buchholz et al. in the context of
Local Quantum Physics, to characterize states that are locally in thermodynamic
equilibrium. It could be shown for the model of massless bosons that these
states exhibit quite interesting properties. The mean phase-space density
satisfies a transport equation, and many of these states break time reversal
symmetry. Moreover, an explicit example of such a state, called the Hot Bang
state, could be found, which models the future of a temperature singularity.
However, although the general results carry over to the fermionic case easily,
the proof of existence of an analogue of the Hot Bang state is not quite that
straightforward. The proof will be given in this paper. Moreover, we will
discuss some of the mathematical subtleties which arise in the fermionic case.Comment: 17 page
The Reeh-Schlieder property for thermal field theories
We show that the Reeh-Schlieder property w.r.t. the KMS-vector is a direct
consequence of locality, additivity and the relativistic KMS-condition. The
latter characterises the thermal equilibrium states of a relativistic quantum
field theory. The statement remains vaild even if the given equilibrium state
breaks spatial translation invariance.Comment: plain tex, 10 page
EFFECTS OF LAND COVER, WATER REDISTRIBUTION, AND TEMPERATURE ON ECOSYSTEM PROCESSES IN THE SOUTH PLATTE BASIN
Over one‐third of the land area in the South Platte Basin of Colorado, Nebraska, and Wyoming, has been converted to croplands. Irrigated cropland now comprises 8% of the basin, while dry croplands make up 31%. We used the RHESSys model to compare the changes in plant productivity and vegetation‐related hydrological processes that occurred as a result of either land cover alteration or directional temperature changes (−2°C, +4°C). Land cover change exerted more control over annual plant productivity and water fluxes for converted grasslands, while the effect of temperature changes on productivity and water fluxes was stronger in the mountain vegetation. Throughout the basin, land cover change increased the annual loss of water to the atmosphere by 114 mm via evaporation and transpiration, an increase of 37%. Both irrigated and nonirrigated grains became active earlier in the year than shortgrass steppe, leading to a seasonal shift in water losses to the atmosphere. Basin‐wide photosynthesis increased by 80% due to grain production. In contrast, a 4°C warming scenario caused annual transpiration to increase by only 3% and annual evaporation to increase by 28%, for a total increase of 71 mm. Warming decreased basin‐wide photosynthesis by 16%. There is a large elevational range from east to west in the South Platte Basin, which encompasses the western edge of the Great Plains and the eastern front of the Rocky Mountains. This elevational gain is accompanied by great changes in topographic complexity, vegetation type, and climate. Shortgrass steppe and crops found at elevations between 850 and 1800 m give way to coniferous forests and tundra between 1800 and 4000 m. Climate is increasingly dominated by winter snow precipitation with increasing elevation, and the timing of snowmelt influences tundra and forest ecosystem productivity, soil moisture, and downstream discharge. Mean annual precipitation of \u3c500 mm on the plains below 1800 m is far less than potential evapotranspiration of 1000–1500 mm and is insufficient for optimum plant productivity. The changes in water flux and photosynthesis from conversion of steppe to cropland are the result of redistribution of snowmelt water from the mountains and groundwater pumping through irrigation projects
Role of anion size, magnetic moment, and disorder on the properties of the organic conductor kappa-(BETS)_2Ga_{1-x}Fe_{x}Cl_{4-y}_Br_{y}
Shubnikov-de Haas and angular dependent magnetoresistance oscillations have
been used to explore the role of anion size, magnetic moment, and disorder in
the organic conductors kappa-(BETS)_2GaBr_{4} and kappa-(BETS)_2FeCl_{2}_Br_{2}
in the isomorphic class kappa-(BETS)_2Ga_{1-x}Fe_{x}Cl_{4-y}_Br_{y}. The
results, combined with previous work, show correlations between the anion
composition (Ga_{1-x}Fe_{x}Cl_{4-y}_Br_{y}) and the superconducting transition
temperature, effective mass, Fermi surface topology, and the mean free path.Comment: 5 pages, 6 figure
Thermal Bogoliubov transformation in nuclear structure theory
Thermal Bogoliubov transformation is an essential ingredient of the thermo
field dynamics -- the real time formalism in quantum field and many-body
theories at finite temperatures developed by H. Umezawa and coworkers. The
approach to study properties of hot nuclei which is based on the extension of
the well-known Quasiparticle-Phonon Model to finite temperatures employing the
TFD formalism is presented. A distinctive feature of the QPM-TFD combination is
a possibility to go beyond the standard approximations like the thermal
Hartree-Fock or the thermal RPA ones.Comment: 8 pages, Proceedings of the International Bogolyubov Conference
"Problems of Theoretical and Mathematical Physics", August 23 -- 27, 2009,
Dubna, Russi
Ghost Condensates and Dynamical Breaking of SL(2,R) in Yang-Mills in the Maximal Abelian Gauge
Ghost condensates of dimension two in SU(N) Yang-Mills theory quantized in
the Maximal Abelian Gauge are discussed. These condensates turn out to be
related to the dynamical breaking of the SL(2,R) symmetry present in this gaugeComment: 16 pages, LaTeX2e, final version to appear in J. Phys.
Climate Change Impacts on Freshwater Wetland Hydrology and Vegetation Cover Cycling Along a Regional Aridity Gradient
Global mean temperature may increase up to 6°C by the end of this century and together with precipitation change may steepen regional aridity gradients. The hydrology, productivity, and ecosystem services from freshwater wetlands depend on their future water balance. We simulated the hydrology and vegetation dynamics of wetland complexes in the North American Prairie Pothole Region with the WETLANDSCAPE model. Simulations for 63 precipitation × temperature combinations spanning 6°C warming and −20% to +20% annual precipitation change at 19 locations along a mid-continental aridity gradient showed that aridity explained up to 99% of the variation in wetland stage and hydroperiod for all wetland permanence types, and in vegetation cycling for semipermanent wetlands. The magnitude and direction of hydrologic responses depended on whether climate changes increased or decreased water deficits. Warming to 6°C and 20% less precipitation increased wetland water deficits and more strongly decreased wetland stage and hydroperiod from historic levels at low aridity, especially in semipermanent wetlands, where peak vegetation cycling (Cover Cycle Index, CCI) also shifted to lower aridity. In contrast, 20% more precipitation decreased water deficits, increasing wetland stage and hydroperiod most strongly in shallow wetlands at high aridity, but filling semipermanent wetlands and reducing CCI at low aridity. All climate changes narrowed the range of aridity favorable to high productivity. Climate changes that reduce water deficits may help maintain wetlands at high aridity at the expense of those at low aridity, but with warming certain, increased deficits are more likely and will help maintain wetlands at lower aridity but exacerbate loss of wetlands at high aridity. Thus, there is likely not a universally applicable approach to mitigating climate change impacts on freshwater wetlands across regional aridity gradients. Conservation strategies need to account for aridity-specific effects of climate change on freshwater wetland ecosystems
A note on the Landauer principle in quantum statistical mechanics
The Landauer principle asserts that the energy cost of erasure of one bit of
information by the action of a thermal reservoir in equilibrium at temperature
T is never less than . We discuss Landauer's principle for quantum
statistical models describing a finite level quantum system S coupled to an
infinitely extended thermal reservoir R. Using Araki's perturbation theory of
KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural
ergodicity assumption on the joint system S+R, that Landauer's bound saturates
for adiabatically switched interactions. The recent work of Reeb and Wolf on
the subject is discussed and compared
- …