35 research outputs found

    Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations

    Get PDF
    We study the formation process of an oxygen torus during the 12–15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density (ρL) and the local electron number density (neL) from the resonant frequencies of standing Alfvén waves and the upper hybrid resonance band. The average ion mass (M) can be calculated by M ∼ ρL/neL under the assumption of quasi-neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0–4.0 and L = 3.7–4.5, respectively, on the morning side. The oxygen torus has M = 4.5–8 amu and extends around the plasmapause that is identified at L∼3.2–3.9. We find that during the initial phase, M is 4–7 amu throughout the plasma trough and remains at ∼1 amu in the plasmasphere, implying that ionospheric O+ ions are supplied into the inner magnetosphere already in the initial phase of the magnetic storm. Numerical calculation under a decrease of the convection electric field reveals that some of thermal O+ ions distributed throughout the plasma trough are trapped within the expanded plasmasphere, whereas some of them drift around the plasmapause on the dawnside. This creates the oxygen torus spreading near the plasmapause, which is consistent with the Van Allen Probes observations. We conclude that the oxygen torus identified in this study favors the formation scenario of supplying O+ in the inner magnetosphere during the initial phase and subsequent drift during the recovery phase

    Van Allen Probes Observations of Second Harmonic Poloidal Standing Alfvén Waves

    Get PDF
    Long-lasting second-harmonic poloidal standing Alfvén waves (P2 waves) were observed by the twin Van Allen Probes (Radiation Belt Storm Probes, or RBSP) spacecraft in the noon sector of the plasmasphere, when the spacecraft were close to the magnetic equator and had a small azimuthal separation. Oscillations of proton fluxes at the wave frequency (∼10 mHz) were also observed in the energy (W) range 50–300 keV. Using the unique RBSP orbital configuration, we determined the phase delay of magnetic field perturbations between the spacecraft with a 2nπ ambiguity. We then used finite gyroradius effects seen in the proton flux oscillations to remove the ambiguity and found that the waves were propagating westward with an azimuthal wave number (m) of ∼−200. The phase of the proton flux oscillations relative to the radial component of the wave magnetic field progresses with W, crossing 0 (northward moving protons) or 180° (southward moving protons) at W ∼ 120 keV. This feature is explained by drift-bounce resonance (mωd ∼ ωb) of ∼120 keV protons with the waves, where ωd and ωb are the proton drift and bounce frequencies. At lower energies, the proton phase space density ( ) exhibits a bump-on-tail structure with occurring in the 1–10 keV energy range. This is unstable and can excite P2 waves through bounce resonance (ω ∼ ωb), where ω is the wave frequency

    Meridional Distribution of Middle-Energy Protons and Pressure-Driven Currents in the Nightside Inner Magnetosphere: Arase Observations

    Get PDF
    We examined the average meridional distribution of middle‐energy protons (10–180 keV) and pressure‐driven currents in the nightside (20–04 hr magnetic local time) ring current region during moderately disturbed times using the Arase satellite\u27s data. Because the Arase satellite has a large inclination orbit of 31°, it covers the magnetic latitude (MLAT) in the range of −40° to 40° and a radial distance of <6RE. We found that the plasma pressure decreased significantly with increasing MLAT. The plasma pressure on the same L* shell at 30° < MLAT < 40° was ∼10–60% of that at 0° < 4 MLAT < 10°, and the rate of decrease was larger on lower L* shells. The pressure anisotropy, derived as the perpendicular pressure divided by the parallel pressure minus 1, decreased with radial distance and showed a weak dependence on MLAT. The magnitude of the plasma beta at 30°<MLAT<40° was 1 or 2 orders smaller than that at 0°<MLAT<10°. The plasma pressure normalized by the value at 0°<MLAT<10° estimated from the magnetic strength and anisotropy was roughly consistent with the observed plasma pressure for L*=3.5–5.5. The azimuthal pressure‐gradient current derived from the plasma pressure was distributed over MLAT∼0–20°, while the curvature current was limited within MLAT∼0–10°. We suggest that the latitudinal dependence should be taken into account in interpretations of plasma parameters in successive orbits during magnetic storms

    Giant Pulsations Excited by a Steep Earthward Gradient of Proton Phase Space Density: Arase Observation

    Get PDF
    AbstractWe present observational evidence of drift resonance between westward propagating odd mode standing ultralow frequency waves and energetic protons. Compressional ∼13 mHz (Pc4 band) waves and proton flux oscillations at >50 keV were detected at ∼03 hr magnetic local time by the Arase satellite on 15 April 2017. The azimuthal wave number (m number) is estimated to be ∼−50 from ground observations, while the theory of drift resonance gives m ∼− 49 for odd mode waves and ∼110‐keV protons, providing evidence that the drift resonance indeed took place in this event. We also found a steep earthward gradient of proton phase space density, which can quantitatively explain the wave excitation. The observed waves show typical features of giant pulsations (Pgs), regarding local time, m number, and flux oscillations. This study, therefore, has great implications to the field line mode structure and excitation mechanism of Pgs

    地球磁気圏でのドリフトバウンス共鳴によるPc4-5地磁気脈動とイオン間のエネルギー輸送

    Get PDF
    京都大学0048新制・課程博士博士(理学)甲第22257号理博第4571号新制||理||1656(附属図書館)京都大学大学院理学研究科地球惑星科学専攻(主査)教授 田口 聡, 教授 秋友 和典, 准教授 藤 浩明学位規則第4条第1項該当Doctor of ScienceKyoto UniversityDGA

    An Interactive Data Language software package to calculate ionospheric conductivity by using numerical models

    Get PDF
    The Inter-university Upper atmosphere Global Observation NETwork (IUGONET) project focuses on handling ground-based observational data of the upper atmosphere. To this end, the project members have been developing a data analysis software package which is based on Interactive Data Language (IDL). Filling the spatial gaps in observational data requires the use of numerical models. In this paper, we discuss an IDL software package for global ionospheric conductivity by integration of 3rd party numerical models. The model can be used to create further derived models
    corecore