76 research outputs found

    Chandrasekhar Mass Limit of White Dwarfs in Modified Gravity

    Full text link
    We investigate the Chandrasekhar mass limit for white dwarfs in various models of f(R)f(R) gravity. Two equations of state for stellar matter are used: simple relativistic polytropic equation with polytropic index n=3n=3 and the realistic Chandrasekhar equation of state. For calculations it is convenient to use the equivalent scalar-tensor theory in the Einstein frame and then to return in the Jordan frame picture. For white dwarfs we can neglect terms containing relativistic effects from General Relativity and we consider the reduced system of equations. Its solution for any model of f(R)=R+βRmf(R)=R+\beta R^{m} (m2m\geq 2, β>0\beta>0) gravity leads to the conclusion that the stellar mass decreases in comparison with standard General Relativity. For realistic equations of state we find that there is a value of the central density for which the mass of white dwarf peaks. Therefore, in frames of modified gravity there is lower limit on the radius of stable white dwarfs and this minimal radius is greater than in General Relativity.Comment: 9 pp., 4 figure

    Dark Energy and Cosmological Horizon Thermal Effects

    Full text link
    We investigate various dark energy models by taking into account the thermal effects induced from Hawking radiation on the apparent horizon of the Universe, for example near a finite-time future singularity. If the dark energy density increases as the Universe expands, the Universe's evolution reaches a singularity of II type (or sudden future singularity). The second derivative of scale factor diverges but the first remains finite. Quasi-de Sitter evolution can change on sudden future singularity in the case of having an effective cosmological constant larger than the maximum possible value of the energy density of the Universe. Another interesting feature of cosmological solution is the possibility of a transition between deceleration and acceleration for quintessence dark energy with a simple equation of state. Finally, we investigate which fluid component can remedy Big Rip singularities and other crushing type singularities.Comment: 15 pp., 7 figs., to appear in Phys. Rev.

    Extended Gravity Description for the GW190814 Supermassive Neutron Star

    Full text link
    Very recently a compact object with a mass in the range 2.50÷2.67M2.50\div 2.67\, M_{\odot} has been discovered via gravitational waves detection of a compact binary coalescence. The mass of this object makes it among the heaviest neutron star never detected or the lightest black hole ever observed. Here we show that a neutron star with this observed mass, can be consistently explained with the mass-radius relation obtained by Extended Theories of Gravity. Furthermore, equations of state, consistent with LIGO observational constraints, are adopted. We consider also the influence of rotation and show that masses of rotating neutron stars can exceed 2.6M2.6 M_\odot for some equations of state compatible with LIGO data.Comment: 8 pages, 3 figure

    Definition of the anti-inflammatory oligosaccharides derived from the galactosaminogalactan (GAG) from Aspergillus fumigatus

    Get PDF
    Galactosaminogalactan (GAG) is an insoluble aminosugar polymer produced by Aspergillus fumigatus and has anti-inflammatory properties. Here, the minimum glycosidic sequences required for the induction of IL-1Ra by peripheral blood mononuclear cells (PBMCs) was investigated. Using chemical degradation of native GAG to isolate soluble oligomers, we have found that the de-N-acetylation of galactosamine residues and the size of oligomer are critical for the in vitro immune response. A minimal oligomer size of 20 galactosamine residues is required for the anti-inflammatory response but the presence of galactose residues is not necessary. In a Dextran sulfate induced colitis mouse model, a fraction of de-N-acetylated oligomers of 13 < dp < 20 rescue inflammatory damage like the native GAG polymer in an IL-1Ra dependent pathway. Our results demonstrate the therapeutic suitability of water-soluble GAG oligosaccharides in IL-1 mediated hyper-inflammatory diseases and suggest that α-1,4-galactosamine oligomers chemically synthesized could represent new anti-inflammatory glycodrugs.Aviesan project Aspergillus, the French Government's Investissement d'Avenir program, Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases (Grant No ANR-10-LABX-62-IBEID), la Fondation pour la Recherche Médicale (DEQ20150331722 LATGE Equipe FRM 2015). RS thanks Fundação para a Ciência e Tecnologia (FCT) contract IF/00021/201

    IL-9 and Mast Cells Are Key Players of Candida albicans Commensalism and Pathogenesis in the Gut

    Get PDF
    Summary: Candida albicans is implicated in intestinal diseases. Identifying host signatures that discriminate between the pathogenic versus commensal nature of this human commensal is clinically relevant. In the present study, we identify IL-9 and mast cells (MCs) as key players of Candida commensalism and pathogenicity. By inducing TGF-β in stromal MCs, IL-9 pivotally contributes to mucosal immune tolerance via the indoleamine 2,3-dioxygenase enzyme. However, Candida-driven IL-9 and mucosal MCs also contribute to barrier function loss, dissemination, and inflammation in experimental leaky gut models and are upregulated in patients with celiac disease. Inflammatory dysbiosis occurs with IL-9 and MC deficiency, indicating that the activity of IL-9 and MCs may go beyond host immunity to include regulation of the microbiota. Thus, the output of the IL-9/MC axis is highly contextual during Candida colonization and reveals how host immunity and the microbiota finely tune Candida behavior in the gut. : Deciphering the mechanisms by which Candida albicans promotes either pathology or protective tolerance in the gut could be clinically relevant. Renga et al. show a key role for IL-9 and mast cells in promoting either inflammatory dysbiosis and pathology or tolerance in leaky gut models and human celiac disease. Keywords: IL-9, mast cells, Candida albicans, intestinal inflammation, IDO1, celiac diseas

    A pathogenic role for cystic fibrosis transmembrane conductance regulator in celiac disease

    Get PDF
    Intestinal handling of dietary proteins usually prevents local inflammatory and immune responses and promotes oral tolerance. However, in ~ 1% of the world population, gluten proteins from wheat and related cereals trigger an HLA DQ2/8-restricted TH1 immune and antibody response leading to celiac disease. Prior epithelial stress and innate immune activation are essential for breaking oral tolerance to the gluten component gliadin. How gliadin subverts host intestinal mucosal defenses remains elusive. Here, we show that the \u3b1-gliadin-derived LGQQQPFPPQQPY peptide (P31-43) inhibits the function of cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel pivotal for epithelial adaptation to cell-autonomous or environmental stress. P31-43 binds to, and reduces ATPase activity of, the nucleotide-binding domain-1 (NBD1) of CFTR, thus impairing CFTR function. This generates epithelial stress, tissue transglutaminase and inflammasome activation, NF-\u3baB nuclear translocation and IL-15 production, that all can be prevented by potentiators of CFTR channel gating. The CFTR potentiator VX-770 attenuates gliadin-induced inflammation and promotes a tolerogenic response in gluten-sensitive mice and cells from celiac patients. Our results unveil a primordial role for CFTR as a central hub orchestrating gliadin activities and identify a novel therapeutic option for celiac disease

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Constant-roll k-inflation dynamics

    No full text
    corecore