255 research outputs found

    Pyrokinin β-Neuropeptide Affects Necrophoretic Behavior in Fire Ants (S. invicta), and Expression of β-NP in a Mycoinsecticide Increases Its Virulence

    Get PDF
    Fire ants are one of the world's most damaging invasive pests, with few means for their effective control. Although ecologically friendly alternatives to chemical pesticides such as the insecticidal fungus Beauveria bassiana have been suggested for the control of fire ant populations, their use has been limited due to the low virulence of the fungus and the length of time it takes to kill its target. We present a means of increasing the virulence of the fungal agent by expressing a fire ant neuropeptide. Expression of the fire ant (Solenopsis invicta) pyrokinin β -neuropeptide (β-NP) by B. bassiana increased fungal virulence six-fold towards fire ants, decreased the LT50, but did not affect virulence towards the lepidopteran, Galleria mellonella. Intriguingly, ants killed by the β-NP expressing fungus were disrupted in the removal of dead colony members, i.e. necrophoretic behavior. Furthermore, synthetic C-terminal amidated β-NP but not the non-amidated peptide had a dramatic effect on necrophoretic behavior. These data link chemical sensing of a specific peptide to a complex social behavior. Our results also confirm a new approach to insect control in which expression of host molecules in an insect pathogen can by exploited for target specific augmentation of virulence. The minimization of the development of potential insect resistance by our approach is discussed

    Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli

    Get PDF
    Modulation of bacterial chromosomal supercoiling is a function of DNA gyrase-catalyzed strand breakage and rejoining. This reaction is exploited by both antibiotic and proteic gyrase inhibitors, which trap the gyrase molecule at the DNA cleavage stage. Owing to this interaction, double-stranded DNA breaks are introduced and replication machinery is arrested at blocked replication forks. This immediately results in bacteriostasis and ultimately induces cell death. Here we demonstrate, through a series of phenotypic and gene expression analyses, that superoxide and hydroxyl radical oxidative species are generated following gyrase poisoning and play an important role in cell killing by gyrase inhibitors. We show that superoxide-mediated oxidation of iron–sulfur clusters promotes a breakdown of iron regulatory dynamics; in turn, iron misregulation drives the generation of highly destructive hydroxyl radicals via the Fenton reaction. Importantly, our data reveal that blockage of hydroxyl radical formation increases the survival of gyrase-poisoned cells. Together, this series of biochemical reactions appears to compose a maladaptive response, that serves to amplify the primary effect of gyrase inhibition by oxidatively damaging DNA, proteins and lipids

    Metatranscriptomics and Pyrosequencing Facilitate Discovery of Potential Viral Natural Enemies of the Invasive Caribbean Crazy Ant, Nylanderia pubens

    Get PDF
    BACKGROUND: Nylanderia pubens (Forel) is an invasive ant species that in recent years has developed into a serious nuisance problem in the Caribbean and United States. A rapidly expanding range, explosive localized population growth, and control difficulties have elevated this ant to pest status. Professional entomologists and the pest control industry in the United States are urgently trying to understand its biology and develop effective control methods. Currently, no known biological-based control agents are available for use in controlling N. pubens. METHODOLOGY AND PRINCIPAL FINDINGS: Metagenomics and pyrosequencing techniques were employed to examine the transcriptome of field-collected N. pubens colonies in an effort to identify virus infections with potential to serve as control agents against this pest ant. Pyrosequencing (454-platform) of a non-normalized N. pubens expression library generated 1,306,177 raw sequence reads comprising 450 Mbp. Assembly resulted in generation of 59,017 non-redundant sequences, including 27,348 contigs and 31,669 singlets. BLAST analysis of these non-redundant sequences identified 51 of potential viral origin. Additional analyses winnowed this list of potential viruses to three that appear to replicate in N. pubens. CONCLUSIONS: Pyrosequencing the transcriptome of field-collected samples of N. pubens has identified at least three sequences that are likely of viral origin and, in which, N. pubens serves as host. In addition, the N. pubens transcriptome provides a genetic resource for the scientific community which is especially important at this early stage of developing a knowledgebase for this new pest

    Brief Report: Using Individualized Orienting Cues to Facilitate First-Word Acquisition in Non-Responders with Autism

    Get PDF
    Though considerable progress has been made in developing techniques for improving the acquisition of expressive verbal communication in children with autism, research has documented that 10–25% still fail to develop speech. One possible technique that could be significant in facilitating responding for this nonverbal subgroup of children is the use of orienting cues. Using a multiple baseline design, this study examined whether individualized orienting cues could be identified, and whether their presentation would result in verbal expressive words. The results suggest that using individualized orienting cues can increase correct responding to verbal models as well as subsequent word use. Theoretical and applied implications of orienting cues as they relate to individualized programming for children with autism are discussed

    Fire Ant Decapitating Fly Cooperative Release Programs (1994–2008): Two Pseudacteon Species, P. tricuspis and P. curvatus, Rapidly Expand Across Imported Fire Ant Populations in the Southeastern United States

    Get PDF
    Natural enemies of the imported fire ants, Solenopsis invicta Buren S. richteri Forel (Hymenoptera: Formicidae), and their hybrid, include a suite of more than 20 fire ant decapitating phorid flies from South America in the genus Pseudacteon. Over the past 12 years, many researchers and associates have cooperated in introducing several species as classical or self-sustaining biological control agents in the United States. As a result, two species of flies, Pseudacteon tricuspis Borgmeier and P. curvatus Borgmeier (Diptera: Phoridae), are well established across large areas of the southeastern United States. Whereas many researchers have published local and state information about the establishment and spread of these flies, here distribution data from both published and unpublished sources has been compiled for the entire United States with the goal of presenting confirmed and probable distributions as of the fall of 2008. Documented rates of expansion were also used to predict the distribution of these flies three years later in the fall of 2011. In the fall of 2008, eleven years after the first successful release, we estimate that P. tricuspis covered about 50% of the fire ant quarantined area and that it will occur in almost 65% of the quarantine area by 2011. Complete coverage of the fire ant quarantined area will be delayed or limited by this species' slow rate of spread and frequent failure to establish in more northerly portions of the fire ant range and also, perhaps, by its preference for red imported fire ants (S. invicta). Eight years after the first successful release of P. curvatus, two biotypes of this species (one biotype occurring predominantly in the black and hybrid imported fire ants and the other occurring in red imported fire ants) covered almost 60% of the fire ant quarantined area. We estimate these two biotypes will cover almost 90% of the quarantine area by 2011 and 100% by 2012 or 2013. Strategic selection of several distributional gaps for future releases will accelerate complete coverage of quarantine areas. However, some gaps may be best used for the release of additional species of decapitating flies because establishment rates may be higher in areas without competing species

    Knowing the enemy: ant behavior and control in a pediatric hospital of Buenos Aires

    Get PDF
    Ant control is difficult in systems even where a variety of control strategies and compounds are allowed; in sensitive places such as hospitals, where there are often restrictions on the methods and toxicants to be applied, the challenge is even greater. Here we report the methods and results of how we faced this challenge of controlling ants in a pediatric hospital using baits. Our strategy was based on identifying the species present and analyzing their behavior. On the one hand, we evaluated outdoors in the green areas of the hospital, the relative abundance of ant genera, their food preferences and the behavioral dominances. On the other hand, control treatments were performed using separately two boron compounds added to sucrose solution which was not highly concentrated to avoid constrains due to the viscosity. Most of the species in the food preference test accepted sugary food; only one species was recorded to visit it less than the protein foods. This result was consistent with the efficacy of control treatments by sugary baits within the rooms. For species that showed good acceptance of sugar solutions in the preference test outdoors, sugar bait control indoors was 100& effective. Conversely, for the only species that foraged significantly less on sugar food, the bait treatment was ineffective. This work reveals the importance of considering the behavior and feeding preferences of the species to be controlled by toxic baits.Fil: Josens, Roxana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Sola, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Marchisio, Nahuel Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Di Renzo, María Agostina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental. Laboratorio del Grupo de Estudio de Insectos Sociales; ArgentinaFil: Giacometti, Alina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    A New Threat to Honey Bees, the Parasitic Phorid Fly Apocephalus borealis

    Get PDF
    Honey bee colonies are subject to numerous pathogens and parasites. Interaction among multiple pathogens and parasites is the proposed cause for Colony Collapse Disorder (CCD), a syndrome characterized by worker bees abandoning their hive. Here we provide the first documentation that the phorid fly Apocephalus borealis, previously known to parasitize bumble bees, also infects and eventually kills honey bees and may pose an emerging threat to North American apiculture. Parasitized honey bees show hive abandonment behavior, leaving their hives at night and dying shortly thereafter. On average, seven days later up to 13 phorid larvae emerge from each dead bee and pupate away from the bee. Using DNA barcoding, we confirmed that phorids that emerged from honey bees and bumble bees were the same species. Microarray analyses of honey bees from infected hives revealed that these bees are often infected with deformed wing virus and Nosema ceranae. Larvae and adult phorids also tested positive for these pathogens, implicating the fly as a potential vector or reservoir of these honey bee pathogens. Phorid parasitism may affect hive viability since 77% of sites sampled in the San Francisco Bay Area were infected by the fly and microarray analyses detected phorids in commercial hives in South Dakota and California's Central Valley. Understanding details of phorid infection may shed light on similar hive abandonment behaviors seen in CCD

    Integrin-Linked Kinase Overexpression and Its Oncogenic Role in Promoting Tumorigenicity of Hepatocellular Carcinoma

    Get PDF
    Background: Integrin-linked kinase (ILK) was first discovered as an integrin β1-subunit binding protein. It localizes at the focal adhesions and is involved in cytoskeleton remodeling. ILK overexpression and its dysregulated signaling cascades have been reported in many human cancers. Aberrant expression of ILK influenced a wide range of signaling pathways and cellular functions. Although ILK has been well characterized in many malignancies, its role in hepatocellular carcinoma (HCC) is still largely unknown. Methodology/Principal Findings: Quantitative PCR analysis was used to examine ILK mRNA expression in HCC clinical samples. It was shown that ILK was overexpressed in 36.9% (21/57) of HCC tissues when compared to the corresponding non-tumorous livers. The overall ILK expression level was significantly higher in tumorous tissues (P = 0.004), with a significant stepwise increase in expression level along tumor progression from tumor stage I to IV (P = 0.045). ILK knockdown stable clones were established in two HCC cell lines, BEL7402 and HLE, and were subjected to different functional assays. Knockdown of ILK significantly suppressed HCC cell growth, motility and invasion in vitro and inhibited tumorigenicity in vivo. Western blot analysis revealed a reduced phosphorylated-Akt (pAkt) at Serine-473 expression in ILK knockdown stable clones when compared to control clones. Conclusion/Significance: This study provides evidence about the clinical relevance of ILK in hepatocarcinogenesis. ILK was found to be progressively elevated along HCC progression. Here our findings also provide the first validation about the oncogenic capacity of ILK in vivo by suppressing its expression in HCC cells. The oncogenic role of ILK is implicated to be mediated by Akt pathway. © 2011 Chan et al.published_or_final_versio

    Ca2+ Extrusion by NCX Is Compromised in Olfactory Sensory Neurons of OMP−/− Mice

    Get PDF
    The role of olfactory marker protein (OMP), a hallmark of mature olfactory sensory neurons (OSNs), has been poorly understood since its discovery. The electrophysiological and behavioral phenotypes of OMP knockout mice indicated that OMP influences olfactory signal transduction. However, the mechanism by which this occurs remained unknown.We used intact olfactory epithelium obtained from WT and OMP(-/-) mice to monitor the Ca(2+) dynamics induced by the activation of cyclic nucleotide-gated channels, voltage-operated Ca(2+) channels, or Ca(2+) stores in single dendritic knobs of OSNs. Our data suggested that OMP could act to modulate the Ca(2+)-homeostasis in these neurons by influencing the activity of the plasma membrane Na(+)/Ca(2+)-exchanger (NCX). Immunohistochemistry verifies colocalization of NCX1 and OMP in the cilia and knobs of OSNs. To test the role of NCX activity, we compared the kinetics of Ca(2+) elevation by stimulating the reverse mode of NCX in both WT and OMP(-/-) mice. The resulting Ca(2+) responses indicate that OMP facilitates NCX activity and allows rapid Ca(2+) extrusion from OSN knobs. To address the mechanism by which OMP influences NCX activity in OSNs we studied protein-peptide interactions in real-time using surface plasmon resonance technology. We demonstrate the direct interaction of the XIP regulatory-peptide of NCX with calmodulin (CaM).Since CaM also binds to the Bex protein, an interacting protein partner of OMP, these observations strongly suggest that OMP can influence CaM efficacy and thus alters NCX activity by a series of protein-protein interactions
    corecore