19 research outputs found

    ALS mutations in the TIA-1 prion-like domain trigger highly condensed pathogenic structures

    Get PDF
    筋萎縮性側索硬化症(ALS)の発症機構の一端を解明 --タンパク質の高密度な凝縮構造が鍵--. 京都大学プレスリリース. 2022-09-13.T cell intracellular antigen-1 (TIA-1) plays a central role in stress granule (SG) formation by self-assembly via the prion-like domain (PLD). In the TIA-1 PLD, amino acid mutations associated with neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) or Welander distal myopathy (WDM), have been identified. However, how these mutations affect PLD self-assembly properties has remained elusive. In this study, we uncovered the implicit pathogenic structures caused by the mutations. NMR analysis indicated that the dynamic structures of the PLD are synergistically determined by the physicochemical properties of amino acids in units of five residues. Molecular dynamics simulations and three-dimensional electron crystallography, together with biochemical assays, revealed that the WDM mutation E384K attenuated the sticky properties, whereas the ALS mutations P362L and A381T enhanced the self-assembly by inducing β-sheet interactions and highly condensed assembly, respectively. These results suggest that the P362L and A381T mutations increase the likelihood of irreversible amyloid fibrillization after phase-separated droplet formation, and this process may lead to pathogenicity

    Direct immobilization of DNA oligomers onto the amine-functionalized glass surface for DNA microarray fabrication through the activation-free reaction of oxanine

    Get PDF
    Oxanine having an O-acylisourea structure was explored to see if its reactivity with amino group is useful in DNA microarray fabrication. By the chemical synthesis, a nucleotide unit of oxanine (Oxa-N) was incorporated into the 5′-end of probe DNA with or without the -(CH2)n- spacers (n = 3 and 12) and found to immobilize the probe DNA covalently onto the NH2-functionalized glass slide by one-pot reaction, producing the high efficiency of the target hybridization. The methylene spacer, particularly the longer one, generated higher efficiency of the target recognition although there was little effect on the amount of the immobilized DNA oligomers. The post-spotting treatment was also carried out under the mild conditions (at 25 or 42°C) and the efficiencies of the immobilization and the target recognition were evaluated similarly, and analogous trends were obtained. It has also been determined under the mild conditions that the humidity and time of the post-spotting treatment, pH of the spotting solution and the synergistic effects with UV-irradiation largely contribute to the desired immobilization and resulting target recognition. Immobilization of DNA oligomer by use of Oxa-N on the NH2-functionalized surface without any activation step would be employed as one of the advanced methods for generating DNA-conjugated solid surface

    Quality Control of Flux Data Measured above a Deciduous Forest

    No full text

    Balance between Distinct HP1 Family Proteins Controls Heterochromatin Assembly in Fission Yeast▿ †

    No full text
    Heterochromatin protein 1 (HP1) is a conserved chromosomal protein with important roles in chromatin packaging and gene silencing. In fission yeast, two HP1 family proteins, Swi6 and Chp2, are involved in transcriptional silencing at heterochromatic regions, but how they function and whether they act cooperatively or differentially in heterochromatin assembly remain elusive. Here, we show that both Swi6 and Chp2 are required for the assembly of fully repressive heterochromatin, in which they play distinct, nonoverlapping roles. Swi6 is expressed abundantly and plays a dose-dependent role in forming a repressive structure through its self-association property. In contrast, Chp2, expressed at a lower level, does not show a simple dose-dependent repressive activity. However, it contributes to the recruitment of chromatin-modulating factors Clr3 and Epe1 and possesses a novel ability to bind the chromatin-enriched nuclear subfraction that is closely linked with its silencing function. Finally, we demonstrate that a proper balance between Swi6 and Chp2 is critical for heterochromatin assembly. Our findings provide novel insight into the distinct and cooperative functions of multiple HP1 family proteins in the formation of higher-order chromatin structure
    corecore