40 research outputs found

    Traffic Incident Database with Multiple Labels Including Various Perspective Environmental Information

    Full text link
    A large dataset of annotated traffic accidents is necessary to improve the accuracy of traffic accident recognition using deep learning models. Conventional traffic accident datasets provide annotations on traffic accidents and other teacher labels, improving traffic accident recognition performance. However, the labels annotated in conventional datasets need to be more comprehensive to describe traffic accidents in detail. Therefore, we propose V-TIDB, a large-scale traffic accident recognition dataset annotated with various environmental information as multi-labels. Our proposed dataset aims to improve the performance of traffic accident recognition by annotating ten types of environmental information as teacher labels in addition to the presence or absence of traffic accidents. V-TIDB is constructed by collecting many videos from the Internet and annotating them with appropriate environmental information. In our experiments, we compare the performance of traffic accident recognition when only labels related to the presence or absence of traffic accidents are trained and when environmental information is added as a multi-label. In the second experiment, we compare the performance of the training with only contact level, which represents the severity of the traffic accident, and the performance with environmental information added as a multi-label. The results showed that 6 out of 10 environmental information labels improved the performance of recognizing the presence or absence of traffic accidents. In the experiment on the degree of recognition of traffic accidents, the performance of recognition of car wrecks and contacts was improved for all environmental information. These experiments show that V-TIDB can be used to learn traffic accident recognition models that take environmental information into account in detail and can be used for appropriate traffic accident analysis.Comment: Conference paper accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023 Reason for revision: Corrected due to a missing space between sentences in the preview's abstract, which led to an unintended URL interpretatio

    Comparison of thallium-201 SPECT redistribution patterns and rubidium-82 PET rest-stress myocardial blood flow imaging

    Full text link
    To compare regional thallium-201 SPECT redistribution patterns with rubidium-82 PET, we studied 81 patients with both imaging modalities. Sixty patients had significant coronary artery disease. All patients underwent PET imaging after dipyridamole infusion, while SPECT imaging was performed after exercise stress (38 patients) and dipyridamole (43 patients). Sixty-eight percent of patients with prior infarct had fixed defects on SPECT, compared to 39% with PET. Sixty-one percent of patients with prior infarct had PET perfusion defects which exhibited ‘reflow’ or normal rubidium-82 tracer uptake (p < 0.05 vs. SPECT). Similar results were seen in patients without prior infarct (26% fixed defects on SPECT vs. 12% for PET, p < 0.05). Regional analysis showed that 57% of fixed SPECT defects corresponded to PET defects with reflow or normal rubidium-82 uptake, while 78% of ‘fixed’ PET defects corresponded to fixed SPECT defects. PET reflow and normal rubidium-82 uptake in sites of fixed thallium-201 SPECT perfusion defects suggest that imaging modalities employing separate tracer injections at rest and after stress, such as rubidium-82 PET, may be more specific in the assessment of myocardial viability, especially in patients with prior myocardial infarction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42537/1/10554_2005_Article_BF01151577.pd

    Application of MinION Amplicon Sequencing to Buccal Swab Samples for Improving Resolution and Throughput of Rumen Microbiota Analysis

    No full text
    The Illumina MiSeq platform has been widely used as a standard method for studying the rumen microbiota. However, the low resolution of taxonomic identification is the only disadvantage of MiSeq amplicon sequencing, as it targets a part of the 16S rRNA gene. In the present study, we performed three experiments to establish a high-resolution and high-throughput rumen microbial profiling approach using a combination of MinION platform and buccal swab sample, which is a proxy for rumen contents. In experiment 1, rumen contents and buccal swab samples were collected simultaneously from cannulated cattle (n = 6) and used for microbiota analysis using three different analytical workflows: amplicon sequencing of the V3-V4 region of the 16S rRNA gene using MiSeq and amplicon sequencing of near full-length 16S rRNA gene using MinION or PacBio Sequel II. All reads derived from the MinION and PacBio platforms were classified at the species-level. In experiment 2, rumen fluid samples were collected from beef cattle (n = 28) and used for 16S rRNA gene amplicon sequencing using the MinION platform to evaluate this sequencing platform for rumen microbiota analysis. We confirmed that the MinION platform allowed species-level taxa assignment for the predominant bacterial groups, which were previously identified at the family- and genus-level using the MiSeq platform. In experiment 3, buccal swab samples were collected from beef cattle (n = 30) and used for 16S rRNA gene amplicon sequencing using the MinION platform to validate the applicability of a combination of the MinION platform and buccal swab samples for rumen microbiota analysis. The distribution of predominant bacterial taxa in the buccal swab samples was similar to that in the rumen samples observed in experiment 2. Based on these results, we concluded that the combination of the MinION platform and buccal swab samples may be potentially applied for rumen microbial analysis in large-scale studies

    Effect of meteoric ions on ionospheric conductance at Jupiter

    No full text
    International audienceIonospheric Pedersen and Hall conductances play significant roles in electromagnetic coupling between the planetary ionosphere and magnetosphere. Several observations and models have suggested the existence of meteoric ions with interplanetary origins in the lower part of Jupiter’s ionosphere; however, no models have considered the contributions of meteoric ions to ionospheric conductance. This study is designed to evaluate the contribution of meteoric ions to ionospheric conductance by developing an ionospheric model combining a meteoroid ablation model and a photochemical model. We find that the largest contribution to Pedersen and Hall conductivities occurs in the meteoric ion layer at altitudes of 350-600 km due to the large concentration of meteoric ions resulting from their long lifetimes of more than 100 Jovian days. Pedersen and Hall conductances are enhanced by factors of 3 and 10, respectively, in the middle- and low-latitude auroral regions when meteoric ions are included. The distribution of Pedersen and Hall conductances becomes axisymmetric in the middle- and low-latitude regions. Enhanced axisymmetric ionospheric conductance should impact magnetospheric plasma convection. The contribution of meteoric ions to the ionospheric conductance is expected to be important only on Jupiter in our solar system because of Jupiter’s intense magnetic and gravitational fields

    Simulation of Dawn‐to‐Dusk Electric Field in the Jovian Inner Magnetosphere via Region 2‐like Field‐Aligned Current

    No full text
    International audienceThe presence of the dawn-to-dusk electric field of about 4 mV/m in the Jovian innermagnetosphere and its response to the enhancement of the solar wind dynamic pressure are still a mystery ofthe rotation-dominated Jovian magnetosphere. Previous studies have suggested that magnetosphere-ionosphere(M-I) coupling via Region 2-like (R2-like) field-aligned current (FAC) could be the origin of the Joviandawn-to-dusk electric field. This study investigates whether the dawn-to-dusk electric field is formed from thisscenario by using a Jovian ionosphere model and a two-dimensional ionospheric potential solver. Our resultsshow that the dawn-dusk asymmetry in the ionospheric potential form even at middle latitudes and that thedawn-to-dusk electric field is induced in the inner magnetosphere if the electric potential is mapped to themagnetospheric equatorial plane. Around the Io orbit, the calculated electric field strength for the ionospherewithout meteoroid influx is too large, 200 mV/m at dawn and 88 mV/m at dusk. One of the solutions is toconsider long-lived meteoric ions in the Jovian ionosphere, which reduce the electric field strength to 15 mV/mat dawn and 12 mV/m at dusk. The model also shows that the electric field strength increases with the intensityof R2-like FAC, consistent with its response to the solar wind dynamic pressure observed by the Hisaki satellite
    corecore