13 research outputs found

    Murine Gammaretrovirus Group G3 Was Not Found in Swedish Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Fibromyalgia

    Get PDF
    BACKGROUND: The recent report of gammaretroviruses of probable murine origin in humans, called xenotropic murine retrovirus related virus (XMRV) and human murine leukemia virus related virus (HMRV), necessitated a bioinformatic search for this virus in genomes of the mouse and other vertebrates, and by PCR in humans. RESULTS: Three major groups of murine endogenous gammaretroviruses were identified. The third group encompassed both exogenous and endogenous Murine Leukemia Viruses (MLVs), and most XMRV/HMRV sequences reported from patients suffering from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Two sensitive real-time PCRs for this group were developed. The predicted and observed amplification range for these and three published XMRV/HMRV PCRs demonstrated conspicuous differences between some of them, partly explainable by a recombinatorial origin of XMRV. Three reverse transcription real-time PCRs (RTQPCRs), directed against conserved and not overlapping stretches of env, gag and integrase (INT) sequences of XMRV/HMRV were used on human samples. White blood cells from 78 patients suffering from ME/CFS, of which 30 patients also fulfilled the diagnostic criteria for fibromyalgia (ME/CFS/FM) and in 7 patients with fibromyalgia (FM) only, all from the Gothenburg area of Sweden. As controls we analyzed 168 sera from Uppsala blood donors. We controlled for presence and amplifiability of nucleic acid and for mouse DNA contamination. To score as positive, a sample had to react with several of the XMRV/HMRV PCRs. None of the samples gave PCR reactions which fulfilled the positivity criteria. CONCLUSIONS: XMRV/HMRV like proviruses occur in the third murine gammaretrovirus group, characterized here. PCRs developed by us, and others, approximately cover this group, except for the INT RTQPCR, which is rather strictly XMRV specific. Using such PCRs, XMRV/HMRV could not be detected in PBMC and plasma samples from Swedish patients suffering from ME/CFS/FM, and in sera from Swedish blood donors

    Absence of Systemic Immune Response to Adenovectors After Intraocular Administration to Children With Retinoblastoma

    No full text
    The ocular environment has been shown to induce tolerance to locally administered antigens. We therefore investigated whether there was a systemic immune response against adenoviral vectors injected into the vitreous of retinoblastoma patients enrolled in a phase 1 clinical trial of adenoviral-mediated thymidine kinase gene transfer. Sections of enucleated eyes were immunostained with antibodies against inflammatory cells. A trend toward increasing numbers of plasma cells, T cells, macrophages, and antigen-presenting cells was observed in the injected subjects' eyes, but systemically, there was no significant increase in the number of adenovirus-specific cytotoxic T lymphocytes (CTLs) or in adenovirus neutralizing antibodies. Therefore, in contrast to studies showing significant immunogenicity of Ad-RSVtk following injection into extraocular tumors, injection into the eye produces only a mild local inflammatory response without evidence of systemic cellular or humoral immune responses to adenovirus

    Interactions between RNA-binding proteins and P32 homologues in trypanosomes and human cells

    No full text
    RNA-binding proteins (RBPs) are involved in many aspects of mRNA metabolism such as splicing, nuclear export, translation, silencing, and decay. To cope with these tasks, these proteins use specialized domains such as the RNA recognition motif (RRM), the most abundant and widely spread RNA-binding domain. Although this domain was first described as a dedicated RNA-binding moiety, current evidence indicates these motifs can also engage in direct protein–protein interactions. Here, we discuss recent evidence describing the interaction between the RRM of the trypanosomatid RBP UBP1 and P22, the homolog of the human multifunctional protein P32/C1QBP. Human P32 was also identified while performing a similar interaction screening using both RRMs of TDP-43, an RBP involved in splicing regulation and Amyotrophic Lateral Sclerosis. Furthermore, we show that this interaction is mediated by RRM1. The relevance of this interaction is discussed in the context of recent TDP-43 interactomic approaches that identified P32, and the numerous evidences supporting interactions between P32 and RBPs. Finally, we discuss the vast universe of interactions involving P32, supporting its role as a molecular chaperone regulating the function of its ligands.Fil: Polledo, Juan Manuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs). Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs); ArgentinaFil: Cervini Bohm, Gabriela Marta . Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs). Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs); ArgentinaFil: Romaniuk, MarĂ­a Albertina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs). Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs); ArgentinaFil: Cassola, Alejandro Carlos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs). Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs); Argentin

    Diagnosis and treatment of adenovirus infection in immunocompromised patients

    No full text
    corecore