5 research outputs found

    a new Pc-C boundary section

    Get PDF
    The widespread, terminal Ediacaran Dengying Formation (~ 551–~ 542 Ma) of South China hosts one of the most prominent negative carbonate carbon isotope excursions in Earth's history and thus bears on the correlation of the Precambrian–Cambrian boundary worldwide. The dominantly carbonate strata of the Dengying Formation are largely studied for their unique preservation of its terminal Ediacaran fauna but their geochemical context is poorly known. This study presents the first high-resolution stable isotope record (δ13C, δ18O) of calcareous siliciclastic shallow-water deposits of the Gaojiashan section (Shaanxi Province). The section includes (in ascending order) the Algal Dolomite Member, the Gaojiashan Member and the Beiwan Member of the Dengying Formation. Our data record a major δ13Ccarb negative excursion to −6 ‰ in the uppermost Gaojiashan Member which is comparable in shape and magnitude to the global Precambrian–Cambrian boundary negative δ13C excursion. Our data set is consistent with a "shallow-water anoxia" scenario which is thought to contribute to the "Cambrian explosion". The stratigraphic occurrence of Cloudina and a large negative δ13C excursion suggest that the Precambrian–Cambrian boundary is located near the top of the Gaojiashan Member and, consequently, that overlying carbonates and dolomites of the Beiwan Member are of earliest Cambrian age. Thus the Gaojiashan section may represent a new shallow-water section spanning the Precambrian–Cambrian boundary. Although bio- and chemostratigraphic data support this novel interpretation, we cannot exclude the possibility that the key excursions may represent a local perturbation indicating a restricted-basin environment

    Ocean acidification and the Permo-Triassic mass extinction.

    Get PDF
    Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined with a quantitative modeling approach. In the latest Permian, increased ocean alkalinity primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere, and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota

    Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere

    Get PDF
    Neoproterozoic (1,000–542 Myr ago) Earth experienced profound environmental change, including ‘snowball’ glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ82/76Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ82/76Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ82/76Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution

    Chemo- and biostratigraphy of the Gaojiashan section (northern Yangtze platform, South China): a new Pc-C boundary section

    No full text
    The widespread, terminal Ediacaran Dengying Formation (~ 551–~ 542 Ma) of South China hosts one of the most prominent negative carbonate carbon isotope excursions in Earth's history and thus bears on the correlation of the Precambrian–Cambrian boundary worldwide. The dominantly carbonate strata of the Dengying Formation are largely studied for their unique preservation of its terminal Ediacaran fauna but their geochemical context is poorly known. This study presents the first high-resolution stable isotope record (δ13C, δ18O) of calcareous siliciclastic shallow-water deposits of the Gaojiashan section (Shaanxi Province). The section includes (in ascending order) the Algal Dolomite Member, the Gaojiashan Member and the Beiwan Member of the Dengying Formation. Our data record a major δ13Ccarb negative excursion to −6 ‰ in the uppermost Gaojiashan Member which is comparable in shape and magnitude to the global Precambrian–Cambrian boundary negative δ13C excursion. Our data set is consistent with a "shallow-water anoxia" scenario which is thought to contribute to the "Cambrian explosion". The stratigraphic occurrence of Cloudina and a large negative δ13C excursion suggest that the Precambrian–Cambrian boundary is located near the top of the Gaojiashan Member and, consequently, that overlying carbonates and dolomites of the Beiwan Member are of earliest Cambrian age. Thus the Gaojiashan section may represent a new shallow-water section spanning the Precambrian–Cambrian boundary. Although bio- and chemostratigraphic data support this novel interpretation, we cannot exclude the possibility that the key excursions may represent a local perturbation indicating a restricted-basin environment
    corecore