8 research outputs found

    Raman-assisted crystallography reveals end-on peroxide intermediates in a nonheme iron enzyme.

    Get PDF
    International audienceIron-peroxide intermediates are central in the reaction cycle of many iron-containing biomolecules. We trapped iron(III)-(hydro)peroxo species in crystals of superoxide reductase (SOR), a nonheme mononuclear iron enzyme that scavenges superoxide radicals. X-ray diffraction data at 1.95 angstrom resolution and Raman spectra recorded in crystallo revealed iron-(hydro)peroxo intermediates with the (hydro)peroxo group bound end-on. The dynamic SOR active site promotes the formation of transient hydrogen bond networks, which presumably assist the cleavage of the iron-oxygen bond in order to release the reaction product, hydrogen peroxide

    Round Robin Testing: Exploring Experimental Uncertainties through a Multifacility Comparison of a Hinged Raft Wave Energy Converter

    Get PDF
    The EU H2020 MaRINET2 project has a goal to improve the quality, robustness and accuracy of physical modelling and associated testing practices for the offshore renewable energy sector. To support this aim, a round robin scale physical modelling test programme was conducted to deploy a common wave energy converter at four wave basins operated by MaRINET2 partners. Test campaigns were conducted at each facility to a common specification and test matrix, providing the unique opportunity for intercomparison between facilities and working practices. A nonproprietary hinged raft, with a nominal scale of 1:25, was tested under a set of 12 irregular sea states. This allowed for an assessment of power output, hinge angles, mooring loads, and six-degree-of-freedom motions. The key outcome to be concluded from the results is that the facilities performed consistently, with the majority of variation linked to differences in sea state calibration. A variation of 5–10% in mean power was typical and was consistent with the variability observed in the measured significant wave heights. The tank depth (which varied from 2–5 m) showed remarkably little influence on the results, although it is noted that these tests used an aerial mooring system with the geometry unaffected by the tank depth. Similar good agreement was seen in the heave, surge, pitch and hinge angle responses. In order to maintain and improve the consistency across laboratories, we make recommendations on characterising and calibrating the tank environment and stress the importance of the device–facility physical interface (the aerial mooring in this case).</jats:p

    A heuristic approach for inter-facility comparison of results from round robin testing of a floating wind turbine in irregular waves

    Get PDF
    This paper introduces metrics developed for analysing irregular wave test results from the round robin testing campaign carried out on a floating wind turbine as part of the EU H2020 MaRINET2 project. A 1/60th scale model of a 10 MW floating platform was tested in wave basins in four different locations around Europe. The tests carried out in each facility included decay tests, tests in regular and irregular waves with and without wind thrust, and tests to characterise the mooring system as well as the model itself. While response amplitude operations (RAOs) are a useful tool for assessing device performance in irregular waves, they are not easy to interpret when performing an inter-facility comparison where there are many variables. Metrics that use a single value per test condition rather than an RAO curve are a means of efficiently comparing tests from different basins in a more heuristic manner. In this research, the focus is on using metrics to assess how the platform responds with varying wave height and thrust across different facilities. It is found that the metrics implemented are very useful for extracting global trends across different basins and test conditions

    Tank Testing of a New Concept of Floating Offshore Wind Turbine

    No full text
    The WINFLO project (Wind turbine with INnovative design for Floating Lightweight Offshore) aims at the development of competitive floating offshore wind turbines, by a consortium of 3 industrial partners (Nass&amp;Wind Industrie, DCNS and Vergnet SA) and 2 scientific partners (IFREMER and ENSTA Bretagne). The design of the floater is an innovative semi-submersible free floating platform with particular aspects. Classical steps toward the assessment of the hydrodynamic and energy production performance include numerical modeling, model scale tank testing and intermediate or full scale tests at sea. The present study describes the wave tank tests including wind generation compared to some numerical modeling results of the coupled system composed of the support floater and the wind turbine

    Structure of liquid films of an ordered foam confined in a narrow channel.

    No full text
    International audienceA bamboo foam is the simplest case of an ordered foam confined in a narrow channel. It is made of a regular film distribution, arranged perpendicularly to the channel. Our work consists of studying the structural properties of several films taken in a drained foam. X-ray experiments highlighted the equality of the equilibrium thickness for each film within a foam. The same thickness was found as by measurements of disjoining pressure isotherms, proving as well that films of a bamboo foam behave like isolated ones. The refinement of X-ray data by a simple model of specular reflectivity showed a significant variation of the electronic distribution of the surfactant layer for a common black film forwarding from one equilibrium state to another. A discussion on the organization of the surfactant molecules to the gas/liquid interface and film is proposed

    Round Robin Laboratory Testing of a Scaled 10 MW Floating Horizontal Axis Wind Turbine

    Get PDF
    This paper documents the round robin testing campaign carried out on a floating wind turbine as part of the EU H2020 MaRINET2 project. A 1/60th scale model of a 10 MW floating platform was tested in wave basins in four different locations around Europe. The tests carried out in each facility included decay tests, tests in regular and irregular waves with and without wind thrust, and tests to characterise the mooring system as well as the model itself. For the tests in wind, only the thrust of the turbine was considered and it was fixed to pre-selected levels. Hence, this work focuses on the hydrodynamic responses of a semi-submersible floating foundation. It was found that the global surge stiffness was comparable across facilities, except in one case where different azimuth angles were used for the mooring lines. Heave and pitch had the same stiffness coefficient and periods for all basins. Response Amplitude Operators (RAOs) were used to compare the responses in waves from all facilities. The shape of the motion RAOs were globally similar for all basins except around some particular frequencies. As the results were non-linear around the resonance and cancellation frequencies, the differences between facilities were magnified at these frequencies. Surge motions were significantly impacted by reflections leading to large differences in these RAOs between all basins

    Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis.

    No full text
    International audienceMicrofluidic devices were designed to perform on micromoles of biological macromolecules and viruses the search and the optimization of crystallization conditions by counter-diffusion, as well as the on-chip analysis of crystals by X-ray diffraction. Chips composed of microchannels were fabricated in poly-dimethylsiloxane (PDMS), poly-methyl-methacrylate (PMMA) and cyclo-olefin-copolymer (COC) by three distinct methods, namely replica casting, laser ablation and hot embossing. The geometry of the channels was chosen to ensure that crystallization occurs in a convection-free environment. The transparency of the materials is compatible with crystal growth monitoring by optical microscopy. The quality of the protein 3D structures derived from on-chip crystal analysis by X-ray diffraction using a synchrotron radiation was used to identify the most appropriate polymers. Altogether the results demonstrate that for a novel biomolecule, all steps from the initial search of crystallization conditions to X-ray diffraction data collection for 3D structure determination can be performed in a single chip
    corecore