4,338 research outputs found

    Banger-related ocular injuries during New Year festivities in Osogbo, SW Nigeria

    Get PDF
    BACKGROUND: Different types of ocular injuries could be sustained following banger explosives. This case report could be the first of such reports in West Africa.CASE DETAILS: We report cases of ocular injuries caused by bangers. This was a hospital-based study of 3 consecutive cases that presented during the New Year festival. Injuries were classified according to Birmingham eye trauma terminology system (BETTS). Two of the patients ended up with irreversible loss of vision. Another two of the three were bystanders.CONCLUSION: As banger-related ocular injuries result in significant morbidity, public education regarding the proper use of bangers would help in preventing the incidence of ocular injuries and blindness. Advocacy for a strict legislation to regulate its use is strongly recommended.KEYWORDS: Bangers, eye injuries, holidays, Nigeri

    Stochastic quantization and holographic Wilsonian renormalization group

    Full text link
    We study relation between stochastic quantization and holographic Wilsonian renormalization group flow. Considering stochastic quantization of the boundary on-shell actions with the Dirichlet boundary condition for certain AdSAdS bulk gravity theories, we find that the radial flows of double trace deformations in the boundary effective actions are completely captured by stochastic time evolution with identification of the AdSAdS radial coordinate `rr' with the stochastic time 'tt' as r=tr=t. More precisely, we investigate Langevin dynamics and find an exact relation between radial flow of the double trace couplings and 2-point correlation functions in stochastic quantization. We also show that the radial evolution of double trace deformations in the boundary effective action and the stochastic time evolution of the Fokker-Planck action are the same. We demonstrate this relation with a couple of examples: (minimally coupled)massless scalar fields in AdS2AdS_2 and U(1) vector fields in AdS4AdS_4.Comment: 1+30 pages, a new subsection is added, references are adde

    Development and formative evaluation of the e-Health implementation toolkit

    Get PDF
    <b>Background</b> The use of Information and Communication Technology (ICT) or e-Health is seen as essential for a modern, cost-effective health service. However, there are well documented problems with implementation of e-Health initiatives, despite the existence of a great deal of research into how best to implement e-Health (an example of the gap between research and practice). This paper reports on the development and formative evaluation of an e-Health Implementation Toolkit (e-HIT) which aims to summarise and synthesise new and existing research on implementation of e-Health initiatives, and present it to senior managers in a user-friendly format.<p></p> <b>Results</b> The content of the e-HIT was derived by combining data from a systematic review of reviews of barriers and facilitators to implementation of e-Health initiatives with qualitative data derived from interviews of "implementers", that is people who had been charged with implementing an e-Health initiative. These data were summarised, synthesised and combined with the constructs from the Normalisation Process Model. The software for the toolkit was developed by a commercial company (RocketScience). Formative evaluation was undertaken by obtaining user feedback. There are three components to the toolkit - a section on background and instructions for use aimed at novice users; the toolkit itself; and the report generated by completing the toolkit. It is available to download from http://www.ucl.ac.uk/pcph/research/ehealth/documents/e-HIT.xls<p></p> <b>Conclusions</b> The e-HIT shows potential as a tool for enhancing future e-Health implementations. Further work is needed to make it fully web-enabled, and to determine its predictive potential for future implementations

    Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission

    Get PDF
    Middle East respiratory syndrome coronavirus (MERS-CoV) is a lethal zoonosis that causes death in 35·7% of cases. As of Feb 28, 2018, 2182 cases of MERS-CoV infection (with 779 deaths) in 27 countries were reported to WHO worldwide, with most being reported in Saudi Arabia (1807 cases with 705 deaths). MERS-CoV features prominently in the WHO blueprint list of priority pathogens that threaten global health security. Although primary transmission of MERS-CoV to human beings is linked to exposure to dromedary camels (Camelus dromedarius), the exact mode by which MERS-CoV infection is acquired remains undefined. Up to 50% of MERS-CoV cases in Saudi Arabia have been classified as secondary, occurring from human-to-human transmission through contact with asymptomatic or symptomatic individuals infected with MERS-CoV. Hospital outbreaks of MERS-CoV are a hallmark of MERS-CoV infection. The clinical features associated with MERS-CoV infection are not MERS-specific and are similar to other respiratory tract infections. Thus, the diagnosis of MERS can easily be missed, unless the doctor or health-care worker has a high degree of clinical awareness and the patient undergoes specific testing for MERS-CoV. The largest outbreak of MERS-CoV outside the Arabian Peninsula occurred in South Korea in May, 2015, resulting in 186 cases with 38 deaths. This outbreak was caused by a traveller with undiagnosed MERS-CoV infection who became ill after returning to Seoul from a trip to the Middle East. The traveller visited several health facilities in South Korea, transmitting the virus to many other individuals long before a diagnosis was made. With 10 million pilgrims visiting Saudi Arabia each year from 182 countries, watchful surveillance by public health systems, and a high degree of clinical awareness of the possibility of MERS-CoV infection is essential. In this Review, we provide a comprehensive update and synthesis of the latest available data on the epidemiology, determinants, and risk factors of primary, household, and nosocomial transmission of MERS-CoV, and suggest measures to r educe risk of transmission

    An Efficient Representation of Euclidean Gravity I

    Full text link
    We explore how the topology of spacetime fabric is encoded into the local structure of Riemannian metrics using the gauge theory formulation of Euclidean gravity. In part I, we provide a rigorous mathematical foundation to prove that a general Einstein manifold arises as the sum of SU(2)_L Yang-Mills instantons and SU(2)_R anti-instantons where SU(2)_L and SU(2)_R are normal subgroups of the four-dimensional Lorentz group Spin(4) = SU(2)_L x SU(2)_R. Our proof relies only on the general properties in four dimensions: The Lorentz group Spin(4) is isomorphic to SU(2)_L x SU(2)_R and the six-dimensional vector space of two-forms splits canonically into the sum of three-dimensional vector spaces of self-dual and anti-self-dual two-forms. Consolidating these two, it turns out that the splitting of Spin(4) is deeply correlated with the decomposition of two-forms on four-manifold which occupies a central position in the theory of four-manifolds.Comment: 31 pages, 1 figur

    A geometric network model of intrinsic grey-matter connectivity of the human brain

    Get PDF
    Network science provides a general framework for analysing the large-scale brain networks that naturally arise from modern neuroimaging studies, and a key goal in theoretical neuro- science is to understand the extent to which these neural architectures influence the dynamical processes they sustain. To date, brain network modelling has largely been conducted at the macroscale level (i.e. white-matter tracts), despite growing evidence of the role that local grey matter architecture plays in a variety of brain disorders. Here, we present a new model of intrinsic grey matter connectivity of the human connectome. Importantly, the new model incorporates detailed information on cortical geometry to construct ‘shortcuts’ through the thickness of the cortex, thus enabling spatially distant brain regions, as measured along the cortical surface, to communicate. Our study indicates that structures based on human brain surface information differ significantly, both in terms of their topological network characteristics and activity propagation properties, when compared against a variety of alternative geometries and generative algorithms. In particular, this might help explain histological patterns of grey matter connectivity, highlighting that observed connection distances may have arisen to maximise information processing ability, and that such gains are consistent with (and enhanced by) the presence of short-cut connections

    Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using Tc-99m-HMPAO

    Get PDF
    Exosomes known as nano-sized extracellular vesicles attracted recent interests due to their potential usefulness in drug delivery. Amid remarkable advances in biomedical applications of exosomes, it is crucial to understand in vivo distribution and behavior of exosomes. Here, we developed a simple method for radiolabeling of macrophage-derived exosome-mimetic nanovesicles (ENVs) with Tc-99m-HMPAO under physiologic conditions and monitored in vivo distribution of Tc-99m-HMPAO-ENVs using SPECT/CT in living mice. ENVs were produced from the mouse RAW264.7 macrophage cell line and labeled with Tc-99m-HMPAO for 1 hr incubation, followed by removal of free Tc-99m-HMPAO. SPECT/CT images were serially acquired after intravenous injection to BALB/c mouse. When ENVs were labeled with Tc-99m-HMPAO, the radiochemical purity of Tc-99m-HMPAO-ENVs was higher than 90% and the expression of exosome specific protein (CD63) did not change in Tc-99m-HMPAO-ENVs. Tc-99m-HMPAOENVs showed high serum stability (90%) which was similar to that in phosphate buffered saline until 5 hr. SPECT/CT images of the mice injected with Tc-99m-HMPAO-ENVs exhibited higher uptake in liver and no uptake in brain, whereas mice injected with Tc-99m-HMPAO showed high brain uptake until 5 hr. Our noninvasive imaging of radiolabeled-ENVs promises better understanding of the in vivo behavior of exosomes for upcoming biomedical application.114327Ysciescopu
    corecore