5 research outputs found

    Korea Geodetic VLBI Station, Sejong

    Get PDF
    The Sejong VLBI station officially joined the IVS as a new Network Station in 2012. This report summarizes the activities of the Sejong station during 2012. The following are the activities at the station: 1) VLBI test observations were carried out with the Tsukuba 34-m antenna of the GSI in Japan. As a result, the Sejong antenna needs to improve its efficiency, which is currently in progress, 2) A survey to connect the VLBI reference point to GNSS and ground marks was conducted, and 3) To see the indirect effects of RFI (Radio Frequency Interference) at this place, we checked the omni-direction (AZ 0 to 360, EL fixed at 7) for RFI influence

    Round-Trip System Available to Measure Path Length Variation in Korea VLBI System for Geodesy

    Get PDF
    The construction project of Korea Geodetic VLBI officially started in October 2008. The construction of all systems will be completed by the end of 2011. The project was named Korea VLBI system for Geodesy (KVG), and its main purpose is to maintain the Korea Geodetic Datum. In case of the KVG system, an observation room with an H-maser frequency standard is located in a building separated from the antenna by several tens of meters. Therefore KVG system will adopt a so-called round-trip system to transmit reference signals to the antenna with reduction of the effect of path length variations. KVG s round-trip system is designed not only to use either metal or optical fiber cables, but also to measure path length variations directly. We present this unique round trip system for KVG

    The State and Development Direction of the Geodetic VLBI Station in Korea

    Get PDF
    A permanent geodetic VLBI station with a 22-m diameter antenna will be newly constructed in Korea by the National Geographic Information Institute (NGII) under the project Korea VLBI system for Geodesy (KVG) that aims at maintaining the Korean geodetic datum accurately on the International Terrestrial Reference Frame (ITRF). KVG can receive 2, 8, 22, and 43 GHz bands simultaneously in order to conduct geodetic and astronomical VLBI observations with Korea astronomical VLBI stations along with geodetic observations with IVS stations. This simultaneous four-band receiving capability is a unique feature of the KVG system. The KVG has started officially in October 2008. A new geodetic VLBI station will be constructed at Sejong city (about 120 km south of Seoul and about 20 km north-northwest of Daejeon) and construction of all systems will be completed in 2011

    Overview of the Observing System and Initial Scientific Accomplishments of the East Asian VLBI Network (EAVN)

    No full text
    The East Asian VLBI Network (EAVN) is an international VLBI facility in East Asia and is operated under mutual collaboration between East Asian countries, as well as part of Southeast Asian and European countries. EAVN currently consists of 16 radio telescopes and three correlators located in China, Japan, and Korea, and is operated mainly at three frequency bands, 6.7, 22, and 43 GHz with the longest baseline length of 5078 km, resulting in the highest angular resolution of 0.28 milliarcseconds at 43 GHz. One of distinct capabilities of EAVN is multi-frequency simultaneous data reception at nine telescopes, which enable us to employ the frequency phase transfer technique to obtain better sensitivity at higher observing frequencies. EAVN started its open-use program in the second half of 2018, providing a total observing time of more than 1100 h in a year. EAVN fills geographical gap in global VLBI array, resulting in enabling us to conduct contiguous high-resolution VLBI observations. EAVN has produced various scientific accomplishments especially in observations toward active galactic nuclei, evolved stars, and star-forming regions. These activities motivate us to initiate launch of the ’Global VLBI Alliance’ to provide an opportunity of VLBI observation with the longest baselines on the earth

    The IVS data input to ITRF2014

    Get PDF
    2015ivs..data....1N - GFZ Data Services, Helmoltz Centre, Potsdam, GermanyVery Long Baseline Interferometry (VLBI) is a primary space-geodetic technique for determining precise coordinates on the Earth, for monitoring the variable Earth rotation and orientation with highest precision, and for deriving many other parameters of the Earth system. The International VLBI Service for Geodesy and Astrometry (IVS, http://ivscc.gsfc.nasa.gov/) is a service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU). The datasets published here are the results of individual Very Long Baseline Interferometry (VLBI) sessions in the form of normal equations in SINEX 2.0 format (http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex.html, the SINEX 2.0 description is attached as pdf) provided by IVS as the input for the next release of the International Terrestrial Reference System (ITRF): ITRF2014. This is a new version of the ITRF2008 release (Bockmann et al., 2009). For each session/ file, the normal equation systems contain elements for the coordinate components of all stations having participated in the respective session as well as for the Earth orientation parameters (x-pole, y-pole, UT1 and its time derivatives plus offset to the IAU2006 precession-nutation components dX, dY (https://www.iau.org/static/resolutions/IAU2006_Resol1.pdf). The terrestrial part is free of datum. The data sets are the result of a weighted combination of the input of several IVS Analysis Centers. The IVS contribution for ITRF2014 is described in Bachmann et al (2015), Schuh and Behrend (2012) provide a general overview on the VLBI method, details on the internal data handling can be found at Behrend (2013)
    corecore