1,075 research outputs found

    Optimization of 4-Port Asymmetric Elliptical Birdcage RF Coil for 1.5 Tesla MRI

    Get PDF
    The elliptical whole-body radiofrequency (RF) coil can be used for RF transmission/reception in magnetic resonance (MR)-guided treatment or MR-fused system with space between the RF shield and the gradient coil available for other imaging/treatment modality. The elliptical birdcage has higher B1⁺ field uniformity than circular birdcage due to increased filling factor between the RF coil and target. In this work, the asymmetric elliptical birdcage is proposed to improve overall performance through electromagnetic simulations. This work compares the 2-port and 4-port excitations and their effects on B1⁺ field uniformity and SAR deposition for both circular and elliptical coil with symmetrical/asymmetrical structures

    Application of Artificial Neural Network to Search for Gravitational-Wave Signals Associated with Short Gamma-Ray Bursts

    Get PDF
    We apply a machine learning algorithm, the artificial neural network, to the search for gravitational-wave signals associated with short gamma-ray bursts. The multi-dimensional samples consisting of data corresponding to the statistical and physical quantities from the coherent search pipeline are fed into the artificial neural network to distinguish simulated gravitational-wave signals from background noise artifacts. Our result shows that the data classification efficiency at a fixed false alarm probability is improved by the artificial neural network in comparison to the conventional detection statistic. Therefore, this algorithm increases the distance at which a gravitational-wave signal could be observed in coincidence with a gamma-ray burst. In order to demonstrate the performance, we also evaluate a few seconds of gravitational-wave data segment using the trained networks and obtain the false alarm probability. We suggest that the artificial neural network can be a complementary method to the conventional detection statistic for identifying gravitational-wave signals related to the short gamma-ray bursts.Comment: 30 pages, 10 figure

    H2 pressure swing adsorption for IGCC power plant and techno-economic analysis of integrating PSA to IGCC with carbon capture

    Get PDF
    Carbon capture and sequestration technologies emerge as the effectual remediation processes to reduce CO2 emissions from coal power plants. Integrated gasification combined cycle (IGCC) is a representative technology for utilizing coal as feedstock and is consequently playing a more important role to cover the global energy demand. The IGCC produces H2-rich mixture at high pressures (30-35 bar) after capturing CO2. It is reported that the high purity H2 recovered from the IGCC process can be economically supplied to a hydrogen turbine or fuel cell. And a PSA process is a strong candidate to produce high purity H2 from the IGCC effluent gas. However, due to higher operating pressure than the present H2 PSA processes, reducing the operating costs and efficiency has emerged as one of the key issues. Please click Additional Files below to see the full abstract

    Multislice B₁ Mapping Method Using Magnetic Resonance Composite Spin Echo Sequences and Simultaneous Echo Refocusing

    Get PDF
    Radiofrequency (RF) transmit field (B1) mapping is a promising method in mitigating the B1 inhomogeneity in various magnetic resonance imaging (MRI) applications. Although several phase- or magnitude-based B1 mapping methods have been proposed, these methods often require complex modeling, long acquisition time, or specialized MRI sequences. A recently introduced simultaneous echo refocusing (SER) technique can be applied in the B1 mapping method to extend the three-dimensional (3D) spatial coverage only without long data acquisition. Therefore, in this study, a multislice B1 mapping method using composite spin echo sequences and SER techniques is proposed to obtain more accurate B1 mapping with short data acquisition time. To evaluate the performance of the proposed B1 mapping method, computational simulations were performed and compared with Morrell’s method, double angle method, and Yarnykh’s method. These results showed that the angle-to-noise ratio of the proposed B1 mapping method has wider B1 range compared to that of other B1 mapping methods. In addition, the proposed B1 mapping methods were compared to the multislice iterative signal intensity mapping method in both phantom and in vivo human experiments, and there was no remarkable difference between the two methods regarding the flip angle distribution in these experiments. Based on these results, this study demonstrated that the proposed B1 mapping method is suitable for accurately measuring B1 propagation under the condition providing reduced scan time and wider 3D coverage of B1 mapping by applying composite RF pulse and SER techniques into the phase-sensitive method

    Technological Progress in Generation of Induced Pluripotent Stem Cells for Clinical Applications

    Get PDF
    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is achieved by viral-mediated transduction of defined transcription factors. Generation of iPSCs is of great medical interest as they have the potential to be a source of patient-specific cells. For the eventual goal of clinical application, it is necessary to overcome the limitations of low reprogramming efficiency and chromosomal abnormalities due to viral DNA integration. In this paper, we summarize the current state of reprogramming technology for generation of iPSCs and also discuss potential approaches to the development of safe iPSCs for personalized cell-based replacement therapy

    Thermal analysis of bulk filled composite resin polymerization using various light curing modes according to the curing depth and approximation to the cavity wall

    Get PDF
    OBJECTIVE: The purpose of this study was to investigate the polymerization temperature of a bulk filled composite resin light-activated with various light curing modes using infrared thermography according to the curing depth and approximation to the cavity wall. MATERIAL AND METHODS: Composite resin (AeliteFlo, Bisco, Schaumburg, IL, USA) was inserted into a Class II cavity prepared in the Teflon blocks and was cured with a LED light curing unit (Dr's Light, GoodDoctors Co., Seoul, Korea) using various light curing modes for 20 s. Polymerization temperature was measured with an infrared thermographic camera (Thermovision 900 SW/TE, Agema Infra-red Systems AB, Danderyd, Sweden) for 40 s at measurement spots adjacent to the cavity wall and in the middle of the cavity from the surface to a 4 mm depth. Data were analyzed according to the light curing modes with one-way ANOVA, and according to curing depth and approximation to the cavity wall with two-way ANOVA. RESULTS: The peak polymerization temperature of the composite resin was not affected by the light curing modes. According to the curing depth, the peak polymerization temperature at the depth of 1 mm to 3 mm was significantly higher than that at the depth of 4 mm, and on the surface. The peak polymerization temperature of the spots in the middle of the cavity was higher than that measured in spots adjacent to the cavity wall. CONCLUSION: In the photopolymerization of the composite resin, the temperature was higher in the middle of the cavity compared to the outer surface or at the internal walls of the prepared cavity

    Canavan Disease (Spongy Cerebral Degeneration) - A Case Report -

    Get PDF
    We report a case of Canavan disease in a 6 month-old male Korean baby who presented with aggravating tonic-clonic seizure for 5 days. Pathologic' findings could be summarized as follows; increase in brain volume and weight, spongy degeneration in the deep layers of the cerebral cortex and subcortical white matter, and hyperplasia of Alzheimer type II astrocytes throughout the cerebral cortex. Ultrastructurally, there was an abnormal accumulation of fluid in astrocytes and between splitting myelin lamellae

    Aortic Dissection and Rupture in a Child

    Get PDF
    After developing sudden severe chest pain, an 11-year-old boy presented to the emergency room with chest pain and palpitations and was unable to stand up. The sudden onset of chest pain was first reported while swimming at school about 30 minutes prior to presentation. Arterial blood pressure (BP) was 150/90 mmHg, heart rate was 120/minute, and the chest pain was combined with shortness of breath and diaphoresis. During the evaluation in the emergency room, the chest pain worsened and abdominal pain developed. An aortic dissection was suspected and a chest and abdomen CT was obtained. The diagnosis of aortic dissection type B was established by CT imaging. The patient went to surgery immediately with BP control. He died prior to surgery due to aortic rupture. Here we present this rare case of aortic dissection type B with rupture, reported in an 11-year-old Korean child
    corecore