12 research outputs found

    Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer

    Get PDF
    Therapies targeting the type I insulin-like growth factor receptor (IGF-1R) have not been developed with predictive biomarkers to identify tumors with receptor activation. We have previously shown that the insulin receptor substrate (IRS) adaptor proteins are necessary for linking IGF1R to downstream signaling pathways and the malignant phenotype in breast cancer cells. The purpose of this study was to identify gene expression profiles downstream of IGF1R and its two adaptor proteins. IRS-null breast cancer cells (T47D-YA) were engineered to express IRS-1 or IRS-2 alone and their ability to mediate IGF ligand-induced proliferation, motility, and gene expression determined. Global gene expression signatures reflecting IRS adaptor specific and primary vs. secondary ligand response were derived (Early IRS-1, Late IRS-1, Early IRS-2 and Late IRS-2) and functional pathway analysis examined. IRS isoforms mediated distinct gene expression profiles, functional pathways, and breast cancer subtype association. For example, IRS-1/2-induced TGFb2 expression and blockade of TGFb2 abrogated IGF-induced cell migration. In addition, the prognostic value of IRS proteins was significant in the luminal B breast tumor subtype. Univariate and multivariate analyses confirmed that IRS adaptor signatures correlated with poor outcome as measured by recurrence-free and overall survival. Thus, IRS adaptor protein expression is required for IGF ligand responses in breast cancer cells. IRS-specific gene signatures represent accurate surrogates of IGF activity and could predict response to anti-IGF therapy in breast cancer

    Amplified in Breast Cancer Regulates Transcription and Translation in Breast Cancer Cells

    No full text
    Background: Control of mRNA translation is fundamentally altered in cancer. Insulin-like growth factor-I (IGF-I) signaling regulates key translation mediators to modulate protein synthesis (e.g. eIF4E, 4E-BP1, mTOR, and S6K1). Importantly the Amplified in Breast Cancer (AIB1) oncogene regulates transcription and is also a downstream mediator of IGF-I signaling. Materials and Methods: To determine if AIB1 also affects mRNA translation, we conducted gain and loss of AIB1 function experiments in estrogen receptor alpha (ERα)+ (MCF-7L) and ERα- (MDA-MB-231, MDA-MB-435 and LCC6) breast cancer cells. Results: AIB1 positively regulated IGF-I-induced mRNA translation in both ERα+ and ERα- cells. Formation of the eIF4E-4E-BP1 translational complex was altered in the AIB1 ERα+ and ERα- knockdown cells, leading to a reduction in the eIF4E/4E-BP1 and eIF4G/4E-BP1 ratios. In basal and IGF-I stimulated MCF-7 and LCC6 cells, knockdown of AIB1 decreased the integrity of the cap-binding complex, reduced global IGF-I stimulated polyribosomal mRNA recruitment with a concomitant decrease in ten of the thirteen genes tested in polysome-bound mRNAs mapping to proliferation, cell cycle, survival, transcription, translation and ribosome biogenesis ontologies. Specifically, knockdown of AIB1 decreased ribosome-bound mRNA and steady-state protein levels of the transcription factors ERα and E2F1 in addition to reduced ribosome-bound mRNA of the ribosome biogenesis factor BYSL in a cell-line specific manner to regulate mRNA translation. Conclusion: The oncogenic transcription factor AIB1 has a novel role in the regulation of polyribosome recruitment and formation of the translational complex. Combinatorial therapies targeting IGF signaling and mRNA translation in AIB1 expressing breast cancers may have clinical benefit and warrants further investigation

    Tyrosine Phosphorylation of the Nuclear Receptor Coactivator AIB1/SRC-3 Is Enhanced by Abl Kinase and Is Required for Its Activity in Cancer Cells▿ †

    No full text
    Overexpression and activation of the steroid receptor coactivator amplified in breast cancer 1 (AIB1)/steroid receptor coactivator-3 (SRC-3) have been shown to have a critical role in oncogenesis and are required for both steroid and growth factor signaling in epithelial tumors. Here, we report a new mechanism for activation of SRC coactivators. We demonstrate regulated tyrosine phosphorylation of AIB1/SRC-3 at a C-terminal tyrosine residue (Y1357) that is phosphorylated after insulin-like growth factor 1, epidermal growth factor, or estrogen treatment of breast cancer cells. Phosphorylated Y1357 is increased in HER2/neu (v-erb-b2 erythroblastic leukemia viral oncogene homolog 2) mammary tumor epithelia and is required to modulate AIB1/SRC-3 coactivation of estrogen receptor alpha (ERα), progesterone receptor B, NF-κB, and AP-1-dependent promoters. c-Abl (v-Abl Abelson murine leukemia viral oncogene homolog 1) tyrosine kinase directly phosphorylates AIB1/SRC-3 at Y1357 and modulates the association of AIB1 with c-Abl, ERα, the transcriptional cofactor p300, and the methyltransferase coactivator-associated arginine methyltransferase 1, CARM1. AIB1/SRC-3-dependent transcription and phenotypic changes, such as cell growth and focus formation, can be reversed by an Abl kinase inhibitor, imatinib. Thus, the phosphorylation state of Y1357 can function as a molecular on/off switch and facilitates the cross talk between hormone, growth factor, and intracellular kinase signaling pathways in cancer

    IRS isoforms mediate distinct gene expression profiles, functional pathways, and breast cancer subtype association.

    No full text
    <p>(A) Venn diagrams depicting four distinct IRS isoform gene signatures were derived from overlapping and differential global gene expression patterns in response to IGF-I. (B) Target gene validation confirms both distinct and overlapping patterns of IRS-regulated gene expression. Gene expression was normalized to RPLP0 and is presented as fold-change of treatment (black bars) vs. serum-free (white bars) conditions. Error bars represent standard deviation and all results are representative of at least three independent replicates. (C) IRS gene signature enrichment in breast tumor subtypes in the UNC337 cohort. Median expression values are represented here in graphical format with p-values included for each of the IRS gene signatures.</p

    IRS proteins regulate TGFβ2 mRNA expression and breast cancer cell motility.

    No full text
    <p>(A) Expression of TGFβ1 and TGFβ2 by qPCR in T47D-YA-IRS-1 (#10 and #20) and T47D-YA-IRS-2 (#1 and #6). (B) IGF-induced TGFβ2 expression in MCF10A, MCF-7L, MCF-7 ATCC, MDA-231 and F11 cells. For A & B, all cells were exposed to 5nm IGF-I for 4 hours prior to harvesting mRNA. Gene expression was normalized to RPLP0 and is presented as fold-change of treatment (black bars) vs. serum-free (white bars) conditions. (C) TGFβ2 expression was assessed by qPCR in an IRS-gene deletion mouse models (left) and IRS-overexpressing SH-EP neuroblastoma cells (right). (D) IRS-1, IRS-2 and TGFβ2 expression in a panel of patient breast tumors. Arrows indicate invasive breast carcinoma. Yellow bars signify high gene expression, blue bars signify low gene expression. E) pSMAD2 was examined by immunoblot at the indicated time points in MCF-7 cells. (F) Cell motility was examined by modified Boyden chamber assay. MCF-7 cells were incubated in the presence of neutralizing antibodies to either TGFβ1 or TGFβ2 and IGF-induced motility assessed. Error bars represent standard deviation and all results are representative of at least three independent replicates.</p

    IRS adaptor protein isoforms define tumor cell biology and regulate global gene expression profiles.

    No full text
    <p>(A) Monolayer growth and motility of T47D-YA (YA), T47D-YA-IRS-1 (#10 and #20) and T47D-YA-IRS-2 (#1 and #6) were measured by MTT assay and (B) scratch-wound healing assay in response to IGF-I treatment. The graphs are presented as fold-change response vs. non-treated control and error bars represent standard deviation. (C) IGF-induced gene expression is IRS-dependent. cDNA microarray analysis was performed on IRS-null YA, IRS-1, and IRS-2 clones. The graph represents IGF-regulated probes in comparison to untreated samples that met both fold (1.5) and p-value (0.05) cutoff values. Hierarchical clustering was carried out on log2-transformed using Gene Cluster 3.0 and visualized in Java TreeView.</p
    corecore