545 research outputs found

    Multicomponent bi-superHamiltonian KdV systems

    Full text link
    It is shown that a new class of classical multicomponent super KdV equations is bi-superHamiltonian by extending the method for the verification of graded Jacobi identity. The multicomponent extension of super mKdV equations is obtained by using the super Miura transformation

    Enhanced cortical thickness measurements for rodent brains via Lagrangian-based RK4 streamline computation

    Get PDF
    The cortical thickness of the mammalian brain is an important morphological characteristic that can be used to investigate and observe the brain's developmental changes that might be caused by biologically toxic substances such as ethanol or cocaine. Although various cortical thickness analysis methods have been proposed that are applicable for human brain and have developed into well-validated open-source software packages, cortical thickness analysis methods for rodent brains have not yet become as robust and accurate as those designed for human brains. Based on a previously proposed cortical thickness measurement pipeline for rodent brain analysis,1 we present an enhanced cortical thickness pipeline in terms of accuracy and anatomical consistency. First, we propose a Lagrangian-based computational approach in the thickness measurement step in order to minimize local truncation error using the fourth-order Runge-Kutta method. Second, by constructing a line object for each streamline of the thickness measurement, we can visualize the way the thickness is measured and achieve sub-voxel accuracy by performing geometric post-processing. Last, with emphasis on the importance of an anatomically consistent partial differential equation (PDE) boundary map, we propose an automatic PDE boundary map generation algorithm that is specific to rodent brain anatomy, which does not require manual labeling. The results show that the proposed cortical thickness pipeline can produce statistically significant regions that are not observed in the previous cortical thickness analysis pipeline

    An investigation on the impact fatigue characteristics of valve leaves for small hermetic reciprocating compressors in a new automated test system

    Get PDF
    This paper presents an investigation on the impact fatigue characteristics of valve leaves that are prevalently used in hermetic reciprocating compressors especially for the household type refrigerators. A unique automated impact fatigue test system has been designed and produced, which enables to carry out impact fatigue tests of the compressor valve leaves under the desired impact velocities. The test system serves investigations on the impact fatigue characteristics with the ability of crack detection and as the subsequent step of automatically terminating the test. The crack detection technique incorporates a non-contact actuation, a data acquisition system and a microphone. The investigation relates the impact fatigue lifetime of the valve leaves with the impact velocity, asymmetrical impact, operation temperature, material type (carbon strip steel, stainless strip steel and new stainless strip steel grade) and tumbling operation duration. Microscopic and metallographic observations were performed on the specimens. It was observed that the crack initiated at the edge of the valve leaves on the contact surface of valve leaf and vale plate and a particle is torn away from the edge before propagation. As the crack propagates, branching along the crack path is caused by the geometrical shape and stress waves on the valve leaves. The investigation and introduced test system guide the design optimization of valve leaves in terms of compressor performance due to energy consumption and lifetime of the valve leaf

    Dosetaxel Induced Pericardial Effusion in Two Gastric Cancer Patients

    Get PDF

    Use of high resolution 3D diffusion tensor imaging to study brain white matter development in live neonatal rats

    Get PDF
    High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and PND14, using only 3 h of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D rapid acquisition relaxation enhancement DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild-to-moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in magnetic resonance images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild-to-moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. fractional anisotropy values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment

    Lifetime Bipolar Disorder comorbidity and related clinical characteristics in patients with primary Obsessive Compulsive Disorder: a report from the International College of Obsessive-Compulsive Spectrum Disorders (ICOCS)

    Get PDF
    IntroductionBipolar disorder (BD) and obsessive compulsive disorder (OCD) are prevalent, comorbid, and disabling conditions, often characterized by early onset and chronic course. When comorbid, OCD and BD can determine a more pernicious course of illness, posing therapeutic challenges for clinicians. Available reports on prevalence and clinical characteristics of comorbidity between BD and OCD showed mixed results, likely depending on the primary diagnosis of analyzed samples.MethodsWe assessed prevalence and clinical characteristics of BD comorbidity in a large international sample of patients with primary OCD (n = 401), through the International College of Obsessive-Compulsive Spectrum Disorders (ICOCS) snapshot database, by comparing OCD subjects with vs without BD comorbidity.ResultsAmong primary OCD patients, 6.2% showed comorbidity with BD. OCD patients with vs without BD comorbidity more frequently had a previous hospitalization (p < 0.001) and current augmentation therapies (p < 0.001). They also showed greater severity of OCD (p < 0.001), as measured by the Yale-Brown Obsessive Compulsive Scale (Y-BOCS).ConclusionThese findings from a large international sample indicate that approximately 1 out of 16 patients with primary OCD may additionally have BD comorbidity along with other specific clinical characteristics, including more frequent previous hospitalizations, more complex therapeutic regimens, and a greater severity of OCD. Prospective international studies are needed to confirm our findings.Peer reviewe

    Black Sea coastal forecasting system

    Get PDF
    The Black Sea coastal nowcasting and forecasting system was built within the framework of EU FP6 ECOOP (European COastalshelf sea OPerational observing and forecasting system) project for five regions: the south-western basin along the coasts of Bulgaria and Turkey, the north-western shelf along the Romanian and Ukrainian coasts, coastal zone around of the Crimea peninsula, the north-eastern Russian coastal zone and the coastal zone of Georgia. The system operates in the real-time mode during the ECOOP project and afterwards. The forecasts include temperature, salinity and current velocity fields. Ecosystem model operates in the off-line mode near the Crimea coast

    Hemoglobin is inversely related to flow-mediated dilatation in chronic kidney disease

    Get PDF
    The microcirculation is regulated by oxygen gradients and by endothelial release of nitric oxide, which can react with hemoglobin to form S-nitroso derivatives. Here we induced flow-mediated dilatation of the brachial artery in response to ischemia in 141 non-diabetic patients with stage 3–4 chronic kidney disease who had no history of smoking, cardiovascular events or use of erythropoietin-based agents. Patients with hemoglobin concentrations above the cohort median of 11.6 g/dl were found to have significant reductions in flow-mediated dilatation compared to those below the median. This inverse relationship remained significant after adjustment for potential confounders, including insulin sensitivity, glomerular filtration rate, proteinuria, body mass index, serum urate, etiology of underlying renal disease, treatment with anti-hypertensive drugs, and traditional Framingham risk factors. Given that hemoglobin can act as an important nitric oxide carrier and buffer, our studies suggest that the mechanism by which hemoglobin influences the endothelium-dependent microcirculation requires its nitrosylation; however, more direct studies need to be performed
    • …
    corecore