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Abstract

The cortical thickness of the mammalian brain is an important morphological characteristic that 

can be used to investigate and observe the brain’s developmental changes that might be caused by 

biologically toxic substances such as ethanol or cocaine. Although various cortical thickness 

analysis methods have been proposed that are applicable for human brain and have developed into 

well-validated open-source software packages, cortical thickness analysis methods for rodent 

brains have not yet become as robust and accurate as those designed for human brains. Based on a 

previously proposed cortical thickness measurement pipeline for rodent brain analysis,1 we present 

an enhanced cortical thickness pipeline in terms of accuracy and anatomical consistency. First, we 

propose a Lagrangian-based computational approach in the thickness measurement step in order to 

minimize local truncation error using the fourth-order Runge-Kutta method. Second, by 

constructing a line object for each streamline of the thickness measurement, we can visualize the 

way the thickness is measured and achieve sub-voxel accuracy by performing geometric post-

processing. Last, with emphasis on the importance of an anatomically consistent partial 

differential equation (PDE) boundary map, we propose an automatic PDE boundary map 

generation algorithm that is specific to rodent brain anatomy, which does not require manual 

labeling. The results show that the proposed cortical thickness pipeline can produce statistically 

significant regions that are not observed in the the previous cortical thickness analysis pipeline.
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1. INTRODUCTION

The development of other mammalian brain such as rodents has significant relationship with 

the development of the human brain. Experimental studies on normal and genetically altered 

rodents have revealed information and insights about the structure and the development of 

the cerebral cortex. Many of detailed information about the neuronal development of the 
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cortex have been found by observing rodent brains.2 Rodent models have allowed various 

experiments designed for the identification of factors such as toxic material and genetic 

patterns that affects the shape change and the development of their brains. Thus, the analysis 

of rodent brains has gained increasing interests3–5 including the cortical thickness analysis 

for the rodent brain as well.

When compared to MRI-based human brain analysis, the analysis of rodent brain can be less 

complicated in two ways. First, the rodent cortex does not show complex folding patterns 

observed in human and primate brains so that the geometric processing of the rodent brain 

surface model can be simplified, for example, no need to use a surface inflation technique. A 

simpler geometric algorithm tends to perform more robust and consistent than a complicated 

algorithm. Second, the controlled environment and the identical genetic copy implemented 

in the design of rodent model experiments also reduce the natural variation of rodent brain. 

Several image processing algorithms perform better when the natural variation is minimized, 

for example, atlas-based segmentation. The analysis of rodent brain, therefore, can be less 

challenging than the analysis of human brain. However, such minimal variation may come to 

challenges in statistical analyses. Because the variation is so small compared to that of 

human brain, each of image and shape processing algorithm employed in the cortical 

thickness analysis pipeline should perform more robust, consistent, and accurate than the 

tools developed for human brain.

Automatic cortical thickness measurement methods for rodent brains have been developed 

previously1, 6 based on the solution of the Laplace PDE; however, both of the current 

cortical thickness analysis pipelines proposed by Lerch et al., and Lee et al., have limitations 

in performing accurate cortical thickness analysis. First, the Laplace PDE-based thickness 

computation method employed in both of these methods cannot guarantee sub-voxel 

accuracy due to their voxel-based implementation. Because the solutions are optimized 

within the voxel grid and then integrated using the Euler method, the precision of the 

thickness measurement cannot be smaller than the voxel size. In order to achieve sub-voxel 

accuracy while minimizing numerical errors, we propose to compute the cortical thickness 

using the fourth-order Runge-Kutta (RK4) integration method within the space of the 

spherical harmonic point distribution model (SPHARM-PDM), which was employed for 

statistical analyses in Lee et al. The RK4 integration method is an adaptive multi-step 

integration method that minimizes local truncation error up to the order of O(n4) and thus is 

more accurate than the first-order Euler method used in the previous pipeline. The 

streamlines integrated by the RK4 method are then examined to perform a geometric post-

processing that verifies whether the streamlines fit exactly at the inner and outer surfaces of 

the rodent cortex.

Second, the PDE-based thickness solution is sensitive to the definition of a PDE boundary 

label map, because the analytic solution is determined completely and uniquely by the 

Neumann and Dirichlet boundary conditions defined in the PDE boundary label map. 

Because an anatomically accurate and consistent PDE boundary map is the pre-condition for 

the subsequent Laplace PDE-based thickness computation step, the way to generate an 

anatomically consistent PDE boundary label map is crucial for Laplace PDE-based thickness 

computation. Thus, the generation of an anatomically consistent PDE boundary map is 
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clearly an important influential factor that must be assured in order to produce anatomically 

meaningful statistical results. However, both of the previous analysis pipelines generate the 

PDE boundary map via atlas-based segmentation method that propagates the PDE boundary 

map using the deformation field that was estimated by its underlying image registration 

method. Consequently, the PDE boundary map used in the previous pipelines is 

anatomically consistent only when the deformation field reflects correctly the anatomical 

relationship between the atlas and the subject, which is not always true. In fact, the previous 

cortical thickness analysis pipeline proposed by Lee et al.,1 sometimes produced erroneous 

PDE boundary maps, and thereby either post-processing steps or manual correction steps 

were required in order to correct such propagation errors. The proposed automatic PDE 

boundary map generation algorithm does not depend on manually created PDE boundary 

maps. Instead, the PDE boundary map is directly created from the neocortex segmentation 

and the other sub-cortical structure segmentations by using surface-based label processing 

algorithms.

This paper is organized as follows. First, we provide background to understand the previous 

cortical thickness analysis pipeline and to contrast the differences between the previous 

pipeline and the proposed method. Although the thickness computation is the core of the 

pipelines, we first introduce the automatic PDE boundary map generation algorithm (Section 

3.1), because the boundary map is provided as an input to the thickness computation step. 

Then, a numerically accurate RK4-based thickness computation method is described in 

Section 3.2, which produces thickness streamlines. Those streamlines are then post-

processed in order to verify whether those streamlines are completely fit within the interior 

and exterior surfaces of the neocortex in order to achieve sub-voxel accuracy. The results are 

presented in Section 4.

2. PREVIOUS WORK

Taking measurements of the cortical thickness of the human brain from MRIs is challenging 

due to the highly convoluted structure of the cortex. Hence, several computerized thickness 

measurement methods have been proposed. The methods used to estimate cortical thickness 

for the human brain from MRIs are categorized into two types: surface-based and voxel-

based.

The surface-based methods require the construction of a surface model for each interface, 

and most of these methods define thickness as the distance between two surfaces. The 

construction of such a surface model can differ for the various methods. For example, Fischl 

etl al.,7 deformed the white matter (WM) boundary to the pial boundary and vice versa.8 

Alternatively, in the case where each boundary can be constructed independently, both 

boundaries can be deformed simultaneously by either snake-like deformable models9 or 

level sets.10 While maintaining the correspondence between two surfaces, the thickness is 

measured as the distance between the correspondence trajectories. These explicit surface 

models enable sub-voxel accuracy,11 high sensitivity, and robustness for different field 

strengths, scanner upgrades, and scanner manufacturers. However, surface-based cortical 

thickness methods should employ methods to preserve the correct topology between two 
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surfaces, such as smoothness and self-intersection constraints or Laplacian functions, which 

require substantial computational costs.

In contrast, voxel-based methods are, in general, computationally efficient because they do 

not involve complex geometry processing for surfaces such as surface folding. However, the 

accuracy and precision of the thickness measurements is usually limited by the resolution of 

the voxel grid, which is affected by partial volume effects at low contrast boundaries. Voxel-

based methods can be classified into morphological,12, 13 line integral,14 Laplacian,15 and 

registration-based16 approaches with several variations for each. For instance, Laplacian 

approaches solve the Laplace equation in different ways, such as boundary value relaxation? 

or matrix methods. The calculation of thickness also has several variations, such as summing 

the Euclidean distance from neighboring voxels on the same streamline or using Lagrangian 

initialization.

Both of the previous methods by Lerch et al.,17 and Lee et al.,1 employed atlas-based 

segmentation for the neocortex segmentation, followed by the boundary-solution label map 

generation to solve Laplace PDE. The measured thickness was sampled on top of the 

triangulated surface model reconstructed from the neocortex segmentation label. The main 

difference of the methods was the use of an explicit surface correspondence algorithm. 

Lerch et al., used implicit correspondence obtained from Laplace PDE, while Lee et al., 

employed a particle-based surface correspondence algorithm to establish group-wise surface 

correspondence, which better captures the surface correspondence using the principle-based 

information-theoretic cost function18, 19 and therefore produces reliable statistical analysis 

results.

Figure 1 illustrates the steps for rodent brain cortical thickness analysis used in Lee et al.,.1 

The pipeline mainly consists of Laplace-PDE based thickness computation,1, 6, 15 the 

SPHARM-PDM construction,20 and the particle-based correspondence algorithm.1, 18 The 

definition of thickness follows that of Jones et al.,,15 which can be obtained from the 

solution of Laplace’s equation. Laplace’s equation is a second-order partial differential 

equation solved for a scalar field u(x) that can be written as the form of Δu = ∇2u(x) = 0, 

where u(x) = uL for x ∈ ΩW M and u(x) = uH for x ∈ ΩCSF. ΩW M and ΩCSF denote the WM-

GM interface and the GM-CSF interface respectively. In order to reconstruct a surface model 

from the neo-cortex segmentation of each subject, the SPHARM description is used and, 

that is, a hierarchical, global, multi-scale boundary description that can only represent 

objects of spherical topology. Kelemen et al. demonstrated that SPHARM can be used to 

express shape deformations.21 Truncating the spherical harmonic series at different degrees 

results in object representations at different levels of detail. SPHARM is a smooth, accurate 

fine-scale shape representation, given a sufficiently high representation level.

3. METHOD

3.1 Automatic PDE Boundary Map Generation

In order to correctly measure cortical thickness, a boundary condition map that defines the 

Laplace PDE boundary condition must be defined in an anatomically consistent manner. In 

the solution of Laplace PDE in my method, the solution domain is bounded by the Dirichlet 

Lee et al. Page 4

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



condition or the Neumann condition. While the Dirichlet condition defines values of the 

solution boundary as a constant, the Neumann boundary defines the values with the first 

order derivative of the solution. Hence, the interface with the Dirichlet condition defines the 

inner and the outer surface where streamlines start and arrive, and yet the Neumann 

condition defines an open boundary that is parallel to streamlines. Figure 2 shows the 

resulting Laplace PDE solution with the setting of different boundary conditions.

The PDE boundary definition map for a subject is defined within a label map. The creation 

of an accurate boundary map typically requires expert’s assessment and quality control. In 

order to reduce time and labor cost, an atlas-based propagation is typically employed in that 

a single PDE boundary map is created for an atlas and then propagated towards each subject 

via the deformation field. Ideally, the propagation should produce a correct boundary map 

that is anatomically consistent with the subject, but in practice, the resulting boundary map 

is not accurate to reflect correct anatomical characteristics of the subject (See figure 7 on 

page 8).

When using the previous voxel-based approach,1 a consistent boundary map generation only 

using voxel-based operations can be difficult because the PDE boundary map should be 

defined for surfaces. Thus, I propose surface-based pre-processing steps that can guarantee 

anatomically consistent PDE boundary map over subjects’ surfaces. The preprocessing steps 

are illustrated in figure 3. First, the initial PDE boundary definition is converted from a voxel 

label into a point attribute of a SPHARM surface model. Each point attribute is copied from 

the closest voxel for the point. Second, a surface-based definition map is corrected via 

majority voting scheme. Assuming that each surface point is in correspondence, the majority 

voting based correction empirically has produced more consistent surface maps. Third, in 

order to compute the Laplace PDE solution in the voxel grid, a new boundary label map is 

created by computing a Voronoi map. Last, the solution domain is overlaid on top of the 

Voronoi map-based boundary map.

3.2 RK4-based Streamline Computation

After obtaining the Laplace PDE solution, the next step is the computation of the thickness 

between the interior (WM-GM) surface and the exterior (GM-CSF) surface. Following the 

definition of the Laplace PDE-based thickness, the thickness is measured by the length of a 

line between the two surfaces that satisfies the perpendicular condition: the line should be 

orthogonal to the isolines of the PDE solution at every point. The streamline is such a line 

that has the property of being tangent to the velocity field, the normalized gradient field of 

the PDE solution, at every point of the PDE solution. Thus, the streamline can be used as a 

mathematical analogy of the cortical column anatomy of the neocortex. The streamline also 

has a nice property of one-to-one correspondence between the WM-GM surface that is 

natural with respect to the neocortex anatomy.

The streamlines are calculated as follows. Let dl be a differential of length along a 

streamline as shown in Figure 5 on page 7. By definition of streamline, the infinitesimally 

small piece of curve dl should be parallel to the gradient vector , 

that is,
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(1)

Expanding the determinant, the equation becomes

(2)

In contrast to Euler’s method used in the transport equation, The streamline is constructed 

explicitly by the integration of the vector field in a Lagrangian fashion. In order to minimize 

local truncation error and faster convergence, I solve the PDE using Runge-Kutta (RK) 

integration method. The fourth order RK method is the most popular numerical method and 

is highly accurate and explicit where cumulative error over a bounded interval is 

proportional to h4. The Runge-Kutta update formula is given as

(3)

where

(4)

(5)

(6)

(7)

3.3 Geometry Processing for Sub-voxel Accuracy

The explicit streamline geometry has several advantages. For example, the bundle of 

thickness streamlines provides intuitive visualization that allows biologists or 

pharmaceutical scientists to better understand the way the cortical thickness is measured. 

However, its most important feature is its ability to estimate thickness with sub-voxel 

accuracy. In analysis of the cortical thickness of the human brain, surface-based cortical 

thickness computation methods are shown to be more robust and consistent than voxel-based 

thickness computation methods,22 because the thickness can be estimated directly using the 

surface-streamline relationship; that is, the streamline must start and finish at the inner and 

outer surfaces as defined. Figure 6 shows streamlines constructed via the voxel-based 

thickness computation using Euler method. In order to achieve sub-voxel accuracy, we 

process the starting and ending segments of the streamlines in order to fit them perfectly 
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within the boundary of the rodent neo-cortex. The enhancement via streamline geometry 

indeed shows much smoother thickness measurements than the voxel-based computation 

methods.

4. RESULTS

The proposed cortical thickness analysis pipeline demonstrates the use of the proposed 

registration and segmentation methods in the context of biomedical image analysis. This 

section addresses non-theoretical issues that may occur in the construction of an image and 

shape analysis pipeline, which may confound the results of analysis in significant ways.

4.1 The Effects of Registration Error

The proposed pipeline consists of several steps in which the processing results of one 

method are fed into the next method. During this streamlined processing, the pre-condition 

of each method must be met. For example, the boundary label map must be prepared for 

each subject in order to compute cortical thickness. The output of the thickness computation 

is sensitive to the input PDE-boundary label map in terms of whether the boundary label 

map is anatomically consistent or not. The use of segmentation by registration may result in 

such a boundary map that is not consistent with regard to anatomical features. Figure 7 on 

the following page presents the surface color maps that represent the inside and the outside 

boundary of the boundary map. The label propagated by the ANTs tool in (a) shows the 

geometric inconsistency between the label map and the surface model, whereas the label 

produced by the proposed segmentation method shows no such boundary inconsistency.

4.2 The Effects of Surface Correspondence Error

The proposed pipeline employs the particle-based surface correspondence algorithm 

proposed by Cates et al.18 and Oguz et al.23 Because the surface correspondence among 

surface models significantly impacts the statistical analysis results, for example, hypothesis 

test results for local thickness differences, the quality of the surface correspondence must be 

ensured to validate the results. In order to qualify the surface correspondence across 

subjects, the surface thickness map of subject A was transferred to the other subject B. If the 

surfaces of A and B are in correspondence, then surface thickness map A must show a 

similar surface thickness with the surface thickness of map B. Figure 8 shows the results of 

the surface thickness map propagation. Before performing the correspondence algorithm, the 

thickness pattern shown in the yellow box of Figure 8 (a) indicates possible correspondence 

error. The thin thickness pattern must be shown along the ridge line if the surface 

correspondence between A and B is consistent. This inconsistency was corrected after 

performing the correspondence algorithm as shown in Figure 8 (b). This example suggests 

the importance of establishing correspondence, among the surface models for statistical 

analysis.

5. CONCLUSION

In this paper, we proposed an enhanced cortical thickness analysis pipeline for rodent brains 

that was based on the previous cortical thickness analysis pipeline. The proposed pipeline 
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consisted of improved thickness computation using the RK4 method and a geometric post-

processing algorithm. The computation time of the proposed thickness computation 

algorithm was shown to be inexpensive in comparison to the computation of the previous 

Euler-based thickness computation approach. The automatic PDE boundary map generation 

algorithm improved the robustness of the analysis pipeline by minimizing manual correction 

tasks and yet helps to produce an anatomically consistent boundary map. Finally, we 

compared the proposed pipeline and the previous pipeline in terms of the probability of 

significance and visualizations of the effects of the proposed components in the pipeline.
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Figure 1. 
The cortical thickness pipeline developed by Lee et al.,.1 (1) First, the neo-cortex 

segmentation is created via atlas-based segmentation. (2) The PDE boundary map is 

provided with the atlas and propagated via the deformation field from the atlas-based 

segmentation. (3) The solution of Laplace PDE and (4) its gradient field is obtained within 

the voxel grid. (5) Thickness is computed by integrating the gradient field using Euler 

method and the measured thickness is sampled onto the SPHARM-PDM surface obtained 

from (6) and (7). The blue shaded steps are enhanced in the proposed method in order to 

improve accuracy and consistency. (* The atlas includes an intensity image, its structural 

segmentation label, and a manually created PDE boundary map. ** The sampling process is 

not necessary in the proposed method.
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Figure 2. 
A solution of Laplace equation is shown. A rectangular region is set up with two different 

boundary conditions (A). The Dirichlet boundary conditions are assigned at the curved left 

side and the flat right side of the rectangle. The curved Dirichlet boundary condition is 

assigned on the left side in order to show isolines parallel to the Dirichlet boundary (B). As 

seen in the color map and the contour images, the isolines are are parallel to the Dirichlet 

boundary and perpendicular to the Neumann boundary.
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Figure 3. 
Spatially consistent label map processing. (A) Initial segmentation label may contain minor 

segmentation errors during manual processing, which may cause erroneous thickness 

measurements. (B) I use a reconstructed surface model, where each point is associated with 

the inner or the outer surface labels, is constructed. An erroneous label surrounded by 

correct label values is removed by using such as a hole filling algorithm. (C) The correct 

surface model propagates a new boundary label map by computing a Voronoi map. (D) The 

final boundary map is generated by overlapping the original neocortex label on top of the 

Voronoi map.
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Figure 4. 
Streamline and differential of length.
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Figure 5. 
Streamline and differential of length.
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Figure 6. 
(a) The red voxels in the 2D gray axial slice image show streamlines measured by the voxel-

based Euler method. The yellow line is the streamline constructed by the RK4 method. The 

voxel-based measurement is slightly greater than the RK4-based measurement. (b) Whereas 

the red streamline created by the RK4 method extends outside of the right surface due to the 

voxel size, the blue streamline is enhanced geometrically to fit exactly within the surface, 

which achieves sub-voxel accuracy.
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Figure 7. 
Label propagation error possibly caused by registration error. (a) The label propagation 

errors are clearly shown around the ridges (yellow circles). (b) Segmentation by the 

proposed segmentation method. In (b), the label is consistent with the surface geometry 

features. The proposed segmentation method reduces the registration errors and therefore 

affects the computation of the cortical thickness. An example of boundary map difference 

between (a) and (b) is shown in (c). The surface color map (d) shows the incorrect 

computation of cortical thickness caused by the boundary map error.
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Figure 8. 
The transferred surface thickness map of A is shown over the surface of subject B in (a). The 

thin blue band, which represents one of the thinnest cortex regions, is not shown on the ridge 

as it should be. The particle correspondence algorithm corrects such mis-correspondence so 

that the transferred surface map of A shows a similar thickness pattern over the surface of B, 

as seen in (b).
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