17 research outputs found

    Gibberellins

    Get PDF

    Using the INTACT method to study PICKLE in individual cell types

    Get PDF
    Cell differentiation is an essential part of development in multicellular organisms. Cells with identical genomic DNA are able to differentiate into a variety of tissues due to selective expression and repression of genes. This tissue-specific gene expression is enabled in part by proteins called chromatin remodelers, which can move, remove, or restructure histone proteins to restrict or allow physical access to genomic DNA. PICKLE (PKL) is a member of the CHD family of ATP-dependent chromatin remodelers that promotes cellular identity in the plant model organism Arabidopsis thaliana. PKL promotes cell identity by silencing embryonic genes during seed germination by promoting the repressive epigenetic modification trimethylation of lysine 27 on histone H3 (H3K27me3). However, the contributions of PKL to H3K27me3 and gene expression have only been studied on an organism-wide scale. Due to the wide variety of tissues that comprise a plant, the specific role of PKL in a given cell type cannot be determined by examining levels of gene expression and epigenetic modifications as averaged across the organism. Through use of the INTACT (isolating nuclei tagged in specific cell types) method, nuclei of two different cell types will be tagged and purified from both wild-type Arabidopsis and Arabidopsis lacking functional PKL. Isolating nuclei from one cell type at a time will allow us to study the function of PKL at a much higher resolution. This will provide both a better understanding of PKL function and a precedent for studies of how CHD chromatin remodelers regulate gene expression in other organisms

    Immediate chromatin immunoprecipitation and on-bead quantitative PCR analysis: A versatile and rapid ChIP procedure

    Get PDF
    © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. Genome-wide chromatin immunoprecipitation (ChIP) studies have brought significant insight into the genomic localization of chromatin-associated proteins and histone modifications. The large amount of data generated by these analyses, however, require approaches that enable rapid validation and analysis of biological relevance. Furthermore, there are still protein and modification targets that are difficult to detect using standard ChIP methods. To address these issues, we developed an immediate chromatin immunoprecipitation procedure which we call ZipChip. ZipChip significantly reduces the time and increases sensitivity allowing for rapid screening of multiple loci. Here we describe how ZipChIP enables detection of histone modifications (H3K4 mono- and trimethylation) and two yeast histone demethylases, Jhd2 and Rph1, which were previously difficult to detect using standard methods. Furthermore, we demonstrate the versatility of ZipChIP by analyzing the enrichment of the histone deacetylase Sir2 at heterochromatin in yeast and enrichment of the chromatin remodeler, PICKLE, at euchromatin in Arabidopsis thaliana

    Gibberellin signaling requires chromatin remodeler PICKLE to promote vegetative growth and phase transitions

    Get PDF
    © 2017 American Society of Plant Biologists. All rights reserved. PICKLE (PKL) is an ATP-dependent chromodomain-helicase-DNA-binding domain (CHD3) chromatin remodeling enzyme in Arabidopsis (Arabidopsis thaliana). Previous studies showed that PKL promotes embryonic-to-vegetative transition by inhibiting expression of seed-specific genes during seed germination. The pkl mutants display a low penetrance of the “pickle root” phenotype, with a thick and green primary root that retains embryonic characteristics. The penetrance of this pickle root phenotype in pkl is dramatically increased in gibberellin (GA)-deficient conditions. At adult stages, the pkl mutants are semidwarfs with delayed flowering time, which resemble reduced GA-signaling mutants. These findings suggest that PKL may play a positive role in regulating GA signaling. A recent biochemical analysis further showed that PKL and GA signaling repressors DELLAs antagonistically regulate hypocotyl cell elongation genes by direct protein-protein interaction. To elucidate further the role of PKL in GA signaling and plant development, we studied the genetic interaction between PKL and DELLAs using the hextuple mutant containing pkl and della pentuple (dP) mutations. Here, we show that PKL is required for most of GA-promoted developmental processes, including vegetative growth such as hypocotyl, leaf, and inflorescence stem elongation, and phase transitions such as juvenile-to-adult leaf and vegetative-to-reproductive phase. The removal of all DELLA functions (in the dP background) cannot rescue these phenotypes in pkl. RNA-sequencing analysis using the ga1 (a GA-deficient mutant), pkl, and the ga1 pkl double mutant further shows that expression of 80% of GA-responsive genes in seedlings is PKL dependent, including genes that function in cell elongation, cell division, and phase transitions. These results indicate that the CHD3 chromatin remodeler PKL is required for regulating gene expression during most of GA-regulated developmental processes

    cTULIP: application of a human-based RNA-seq primary tumor classification tool for cross-species primary tumor classification in canine

    Get PDF
    IntroductionThe domestic dog, Canis familiaris, is quickly gaining traction as an advantageous model for use in the study of cancer, one of the leading causes of death worldwide. Naturally occurring canine cancers share clinical, histological, and molecular characteristics with the corresponding human diseases.MethodsIn this study, we take a deep-learning approach to test how similar the gene expression profile of canine glioma and bladder cancer (BLCA) tumors are to the corresponding human tumors. We likewise develop a tool for identifying misclassified or outlier samples in large canine oncological datasets, analogous to that which was developed for human datasets.ResultsWe test a number of machine learning algorithms and found that a convolutional neural network outperformed logistic regression and random forest approaches. We use a recently developed RNA-seq-based convolutional neural network, TULIP, to test the robustness of a human-data-trained primary tumor classification tool on cross-species primary tumor prediction. Our study ultimately highlights the molecular similarities between canine and human BLCA and glioma tumors, showing that protein-coding one-to-one homologs shared between humans and canines, are sufficient to distinguish between BLCA and gliomas.DiscussionThe results of this study indicate that using protein-coding one-to-one homologs as the features in the input layer of TULIP performs good primary tumor prediction in both humans and canines. Furthermore, our analysis shows that our selected features also contain the majority of features with known clinical relevance in BLCA and gliomas. Our success in using a human-data-trained model for cross-species primary tumor prediction also sheds light on the conservation of oncological pathways in humans and canines, further underscoring the importance of the canine model system in the study of human disease

    The CHD3 Remodeler PICKLE Associates with Genes Enriched for Trimethylation of Histone H3 Lysine 271[W][OA]

    No full text
    In Arabidopsis (Arabidopsis thaliana), the ATP-dependent chromatin remodeler PICKLE (PKL) determines expression of genes associated with developmental identity. PKL promotes the epigenetic mark trimethylation of histone H3 lysine 27 (H3K27me3) that facilitates repression of tissue-specific genes in plants. It has previously been proposed that PKL acts indirectly to promote H3K27me3 by promoting expression of the POLYCOMB REPRESSIVE COMPLEX2 complex that generates H3K27me3. We undertook expression and chromatin immunoprecipitation analyses to further characterize the contribution of PKL to gene expression and developmental identity. Our expression data support a critical and specific role for PKL in expression of H3K27me3-enriched loci but do not support a role for PKL in expression of POLYCOMB REPRESSIVE COMPLEX2. Moreover, our chromatin immunoprecipitation data reveal that PKL protein is present at the promoter region of multiple H3K27me3-enriched loci, indicating that PKL directly acts on these loci. In particular, we find that PKL is present at LEAFY COTYLEDON1 and LEAFY COTYLEDON2 during germination, which is when PKL acts to repress these master regulators of embryonic identity. Surprisingly, we also find that PKL is present at the promoters of actively transcribed genes that are ubiquitously expressed such as ACTIN7 and POLYUBIQUITIN10 that do not exhibit PKL-dependent expression. Taken together, our data contravene the previous model of PKL action and instead support a direct role for PKL in determining levels of H3K27me3 at repressed loci. Our data also raise the possibility that PKL facilitates a common chromatin remodeling process that is not restricted to H3K27me3-enriched regions

    Immediate chromatin immunoprecipitation and on-bead quantitative PCR analysis: a versatile and rapid ChIP procedure

    Get PDF
    Genome-wide chromatin immunoprecipitation (ChIP) studies have brought significant insight into the genomic localization of chromatin-associated proteins and histone modifications. The large amount of data generated by these analyses, however, require approaches that enable rapid validation and analysis of biological relevance. Furthermore, there are still protein and modification targets that are difficult to detect using standard ChIP methods. To address these issues, we developed an immediate chromatin immunoprecipitation procedure which we call ZipChip. ZipChip significantly reduces the time and increases sensitivity allowing for rapid screening of multiple loci. Here we describe how ZipChIP enables detection of histone modifications (H3K4 mono- and trimethylation) and two yeast histone demethylases, Jhd2 and Rph1, which were previously difficult to detect using standard methods. Furthermore, we demonstrate the versatility of ZipChIP by analyzing the enrichment of the histone deacetylase Sir2 at heterochromatin in yeast and enrichment of the chromatin remodeler, PICKLE, at euchromatin in Arabidopsis thaliana

    Table_1_cTULIP: application of a human-based RNA-seq primary tumor classification tool for cross-species primary tumor classification in canine.xlsx

    No full text
    IntroductionThe domestic dog, Canis familiaris, is quickly gaining traction as an advantageous model for use in the study of cancer, one of the leading causes of death worldwide. Naturally occurring canine cancers share clinical, histological, and molecular characteristics with the corresponding human diseases.MethodsIn this study, we take a deep-learning approach to test how similar the gene expression profile of canine glioma and bladder cancer (BLCA) tumors are to the corresponding human tumors. We likewise develop a tool for identifying misclassified or outlier samples in large canine oncological datasets, analogous to that which was developed for human datasets.ResultsWe test a number of machine learning algorithms and found that a convolutional neural network outperformed logistic regression and random forest approaches. We use a recently developed RNA-seq-based convolutional neural network, TULIP, to test the robustness of a human-data-trained primary tumor classification tool on cross-species primary tumor prediction. Our study ultimately highlights the molecular similarities between canine and human BLCA and glioma tumors, showing that protein-coding one-to-one homologs shared between humans and canines, are sufficient to distinguish between BLCA and gliomas.DiscussionThe results of this study indicate that using protein-coding one-to-one homologs as the features in the input layer of TULIP performs good primary tumor prediction in both humans and canines. Furthermore, our analysis shows that our selected features also contain the majority of features with known clinical relevance in BLCA and gliomas. Our success in using a human-data-trained model for cross-species primary tumor prediction also sheds light on the conservation of oncological pathways in humans and canines, further underscoring the importance of the canine model system in the study of human disease.</p
    corecore