12 research outputs found
New Capabilities of the FLUKA Multi-Purpose Code
FLUKA is a general purpose Monte Carlo code able to describe the transport and interaction of any particle and nucleus type in complex geometries over an energy range extending from thermal neutrons to ultrarelativistic hadron collisions. It has many different applications in accelerator design, detector studies, dosimetry, radiation protection, medical physics, and space research. In 2019, CERN and INFN, as FLUKA copyright holders, together decided to end their formal collaboration framework, allowing them henceforth to pursue different pathways aimed at meeting the evolving requirements of the FLUKA user community, and at ensuring the long term sustainability of the code. To this end, CERN set up the FLUKA.CERN Collaboration1. This paper illustrates the physics processes that have been newly released or are currently implemented in the code distributed by the FLUKA.CERN Collaboration2 under new licensing conditions that are meant to further facilitate access to the code, as well as intercomparisons. The description of coherent effects experienced by high energy hadron beams in crystal devices, relevant to promising beam manipulation techniques, and the charged particle tracking in vacuum regions subject to an electric field, overcoming a former lack, have already been made available to the users. Other features, namely the different kinds of low energy deuteron interactions as well as the synchrotron radiation emission in the course of charged particle transport in vacuum regions subject to magnetic fields, are currently undergoing systematic testing and benchmarking prior to release. FLUKA is widely used to evaluate radiobiological effects, with the powerful support of the Flair graphical interface, whose new generation (Available at http://flair.cern) offers now additional capabilities, e.g., advanced 3D visualization with photorealistic rendering and support for industry-standard volume visualization of medical phantoms. FLUKA has also been playing an extensive role in the characterization of radiation environments in which electronics operate. In parallel, it has been used to evaluate the response of electronics to a variety of conditions not included in radiation testing guidelines and standards for space and accelerators, and not accessible through conventional ground level testing. Instructive results have been obtained from Single Event Effects (SEE) simulations and benchmarks, when possible, for various radiation types and energies. The code has reached a high level of maturity, from which the FLUKA.CERN Collaboration is planning a substantial evolution of its present architecture. Moving towards a modern programming language allows to overcome fundamental constraints that limited development options. Our long term goal, in addition to improving and extending its physics performances with even more rigorous scientific oversight, is to modernize its structure to integrate independent contributions more easily and to formalize quality assurance through state-of-the-art software deployment techniques. This includes a continuous integration pipeline to automatically validate the codebase as well as automatic processing and analysis of a tailored physics-case test suite. With regard to the aforementioned objectives, several paths are currently envisaged, like finding synergies with Geant4, both at the core structure and interface level, this way offering the user the possibility to run with the same input different Monte Carlo codes and crosscheck the results
Study of the photon strength functions and level density in the gamma decay of the n+U-234 reaction
The accurate calculations of neutron-induced reaction cross sections are relevant for many nuclear applications. The photon strength functions and nuclear level densities are essential inputs for such calculations. These quantities for U-235 are studied using the measurement of the gamma de-excitation cascades in radiative capture on U-234 with the Total Absorption Calorimeter at n_TOF at CERN. This segmented 4 pi gamma calorimeter is designed to detect gamma rays emitted from the nucleus with high efficiency. This experiment provides information on gamma multiplicity and gamma spectra that can be compared with numerical simulations. The code DICEBOXC is used to simulate the gamma cascades while GEANT4 is used for the simulation of the interaction of these gammas with the TAC materials. Available models and their parameters are being tested using the present data. Some preliminary results of this ongoing study are presented and discussed
Sexual Relationships in Hispanic Countries: a Literature Review
This is a pre-print of an article published in Current Sexual Health Reports. The final authenticated version is available online at: https://doi.org/10.1007/s11930-020-00272-6Purpose of Review:
Sexuality is a complex dimension for which culture seems to play an important role, particularly in countries that are more traditional. This review summarizes the knowledge about sexual relationships in Hispanic countries, considering sexual debut, attitudes, behaviors, and satisfaction.
Recent Findings:
In line with the literature reviewed, the sexual double standard seems to be continuing to influence sexual relationships. Some countries show more open expressions of sexuality based on the level of gender inequality or sexualized context, and within countries, variables such as religious commitment, family characteristics, and access to resources may play important roles in sexuality.
Summary:
Future research, policies, and interventions should consider these specific characteristics, including these forms of expression of sexuality, in the adjustment of cross-cultural and cross-national strategies
First results of the140ce(N,ŇŻ)141ce cross-section measurement at n_tof
An accurate measurement of the140Ce(n,ŇŻ) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the140Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in140Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the140Ce Maxwellian-averaged cross-section
Sexual satisfaction among young women: The frequency of sexual activities as a mediator
El objetivo del estudio fue analizar la relaciĂłn entre varios pre-
dictores social-cognitivos del comportamiento sexual (creencias, conoci-
mientos, actitudes y valores), las conductas sexuales, la frecuencia de acti-
vidades sexuales y diferentes dimensiones de la satisfacciĂłn sexual (indivi-
dual/de pareja y actual/deseada). Para ello se utilizĂł un paradigma mixto
de investigación. Para recabar los datos se diseñó una entrevista semies-
tructurada que fue administrada a mujeres jóvenes de entre 14 y 20 años.
El análisis de correlaciones indicó que no se establecen las relaciones direc-
tas esperadas entre los predictores social-cognitivos, la conducta y la satis-
facciĂłn sexual, por lo que se exploraron posibles efectos indirectos. Los re-
sultados del modelo de mediaciĂłn que mejor se ajusta a los datos revelaron
que los comportamientos sexuales se asocian a la satisfacciĂłn sexual (ac-
tual) de forma directa e indirecta a través de la frecuencia con que se prac-
tican las actividades sexuales en un (probable) efecto de mediaciĂłn parcial.
Estos hallazgos tienen interesantes aplicaciones prácticas en términos de
educaciĂłn sexual y promociĂłn de la salud sexual en mujeres jĂłvenes.The aim of this study was to analyse the relationship among
several social-cognitive predictors of sexual behaviour (beliefs, knowledge,
attitudes and values), sexual behaviours, the frequency of sexual activities
and several dimensions of sexual satisfaction (individual/with the partner
and actual/desired sexual satisfaction). A mixed-method study was con-
ducted. The data were collected using a semi-structured interview specially
designed for this study, which was administered to 14- to 20-year-old
women. Correlation analyses revealed that the expected direct associations
between the explored social-cognitive predictors, sexual behaviour and
sexual satisfaction were not established; consequently, possible indirect ef-
fects were explored. The results of the mediational model that better fit
the data indicated that sexual behaviour is related to (actual) sexual satis-
faction not only directly but also indirectly through the frequency of sexual
activities in a (probable) effect of partial mediation. These findings have
interesting applications in terms of sexual education and sexual health
promotion among young women
Nuclear data program for Neutron Capture Therapy at the n_TOF facility at CERN
Few cross section measurements have been performed at the n TOF facility at CERN with the aim of supplying nuclear data for some neutron-induced reactions of importance in Neutron Capture Therapy. In this paper, a brief introduction to the topic will be presented as well as a discussion on the status of the nuclear data available prior to the executions of the experiments
New Capabilities of the FLUKA Multi-Purpose Code
FLUKA is a general purpose Monte Carlo code able to describe the transport and interaction of any particle and nucleus type in complex geometries over an energy range extending from thermal neutrons to ultrarelativistic hadron collisions. It has many different applications in accelerator design, detector studies, dosimetry, radiation protection, medical physics, and space research. In 2019, CERN and INFN, as FLUKA copyright holders, together decided to end their formal collaboration framework, allowing them henceforth to pursue different pathways aimed at meeting the evolving requirements of the FLUKA user community, and at ensuring the long term sustainability of the code. To this end, CERN set up the FLUKA.CERN Collaboration (1) . This paper illustrates the physics processes that have been newly released or are currently implemented in the code distributed by the FLUKA.CERN Collaboration (2) under new licensing conditions that are meant to further facilitate access to the code, as well as intercomparisons. The description of coherent effects experienced by high energy hadron beams in crystal devices, relevant to promising beam manipulation techniques, and the charged particle tracking in vacuum regions subject to an electric field, overcoming a former lack, have already been made available to the users. Other features, namely the different kinds of low energy deuteron interactions as well as the synchrotron radiation emission in the course of charged particle transport in vacuum regions subject to magnetic fields, are currently undergoing systematic testing and benchmarking prior to release. FLUKA is widely used to evaluate radiobiological effects, with the powerful support of the Flair graphical interface, whose new generation (Available at http://flair.cem) offers now additional capabilities, e.g., advanced 3D visualization with photorealistic rendering and support for industry-standard volume visualization of medical phantoms. FLUKA has also been playing an extensive role in the characterization of radiation environments in which electronics operate. In parallel, it has been used to evaluate the response of electronics to a variety of conditions not included in radiation testing guidelines and standards for space and accelerators, and not accessible through conventional ground level testing. Instructive results have been obtained from Single Event Effects (SEE) simulations and benchmarks, when possible, for various radiation types and energies. The code has reached a high level of maturity, from which the FLUKA.CERN Collaboration is planning a substantial evolution of its present architecture. Moving towards a modern programming language allows to overcome fundamental constraints that limited development options. Our long term goal, in addition to improving and extending its physics performances with even more rigorous scientific oversight, is to modernize its structure to integrate independent contributions more easily and to formalize quality assurance through state-of-the-art software deployment techniques. This includes a continuous integration pipeline to automatically validate the codebase as well as automatic processing and analysis of a tailored physics-case test suite. With regard to the aforementioned objectives, several paths are currently envisaged, like finding synergies with Geant4, both at the core structure and interface level, this way offering the user the possibility to run with the same input different Monte Carlo codes and crosscheck the results.LPA
New Capabilities of the FLUKA Multi-Purpose Code
FLUKA is a general purpose Monte Carlo code able to describe the transport and interaction of any particle and nucleus type in complex geometries over an energy range extending from thermal neutrons to ultrarelativistic hadron collisions. It has many different applications in accelerator design, detector studies, dosimetry, radiation protection, medical physics, and space research. In 2019, CERN and INFN, as FLUKA copyright holders, together decided to end their formal collaboration framework, allowing them henceforth to pursue different pathways aimed at meeting the evolving requirements of the FLUKA user community, and at ensuring the long term sustainability of the code. To this end, CERN set up the FLUKA.CERN Collaboration1. This paper illustrates the physics processes that have been newly released or are currently implemented in the code distributed by the FLUKA.CERN Collaboration2 under new licensing conditions that are meant to further facilitate access to the code, as well as intercomparisons. The description of coherent effects experienced by high energy hadron beams in crystal devices, relevant to promising beam manipulation techniques, and the charged particle tracking in vacuum regions subject to an electric field, overcoming a former lack, have already been made available to the users. Other features, namely the different kinds of low energy deuteron interactions as well as the synchrotron radiation emission in the course of charged particle transport in vacuum regions subject to magnetic fields, are currently undergoing systematic testing and benchmarking prior to release. FLUKA is widely used to evaluate radiobiological effects, with the powerful support of the Flair graphical interface, whose new generation (Available at http://flair.cern) offers now additional capabilities, e.g., advanced 3D visualization with photorealistic rendering and support for industry-standard volume visualization of medical phantoms. FLUKA has also been playing an extensive role in the characterization of radiation environments in which electronics operate. In parallel, it has been used to evaluate the response of electronics to a variety of conditions not included in radiation testing guidelines and standards for space and accelerators, and not accessible through conventional ground level testing. Instructive results have been obtained from Single Event Effects (SEE) simulations and benchmarks, when possible, for various radiation types and energies. The code has reached a high level of maturity, from which the FLUKA.CERN Collaboration is planning a substantial evolution of its present architecture. Moving towards a modern programming language allows to overcome fundamental constraints that limited development options. Our long term goal, in addition to improving and extending its physics performances with even more rigorous scientific oversight, is to modernize its structure to integrate independent contributions more easily and to formalize quality assurance through state-of-the-art software deployment techniques. This includes a continuous integration pipeline to automatically validate the codebase as well as automatic processing and analysis of a tailored physics-case test suite. With regard to the aforementioned objectives, several paths are currently envisaged, like finding synergies with Geant4, both at the core structure and interface level, this way offering the user the possibility to run with the same input different Monte Carlo codes and crosscheck the results.peerReviewe
Measurement of the 244Cm and 246Cm neutron-induced cross sections at the n_TOF facility
The neutron capture reactions of the 244Cm and 246Cm isotopes open the path for the formation of heavier Cm isotopes and of heavier elements such as Bk and Cf in a nuclear reactor. In addition, both isotopes belong to the minor actinides with a large contribution to the decay heat and to the neutron emission in irradiated fuels proposed for the transmutation of nuclear waste and fast critical reactors. The available experimental data for both isotopes are very scarce. We measured the neutron capture cross section with isotopically enriched samples of 244Cm and 246Cm provided by JAEA. The measurement covers the range from 1 eV to 250 eV in the n_TOF Experimental Area 2 (EAR-2). In addition, a normalization measurement with the 244Cm sample was performed at Experimental Area 1 (EAR-1) with the Total Absorption Calorimeter (TAC)