404 research outputs found

    Conflicting Interpretation of Genetic Variants and Cancer Risk by Commercial Laboratories as Assessed by the Prospective Registry of Multiplex Testing

    Get PDF
    Altres ajuts: Ambry Genetics, Myriad Genetics, Novartis (I), Pfizer (I)Massively parallel sequencing allows simultaneous testing of multiple genes associated with cancer susceptibility. Guidelines are available for variant classification; however, interpretation of these guidelines by laboratories and providers may differ and lead to conflicting reporting and, potentially, to inappropriate medical management. We describe conflicting variant interpretations between Clinical Laboratory Improvement Amendments-approved commercial clinical laboratories, as reported to the Prospective Registry of Multiplex Testing (PROMPT), an online genetic registry. Clinical data and genetic testing results were gathered from 1,191 individuals tested for inherited cancer susceptibility and self-enrolled in PROMPT between September 2014 and October 2015. Overall, 518 participants (603 genetic variants) had a result interpreted by more than one laboratory, including at least one submitted to ClinVar, and these were used as the final cohort for the current analysis. Of the 603 variants, 221 (37%) were classified as a variant of uncertain significance (VUS), 191 (32%) as pathogenic, and 34 (6%) as benign. The interpretation differed among reporting laboratories for 155 (26%). Conflicting interpretations were most frequently reported for CHEK2 and ATM, followed by RAD51C, PALB2, BARD1, NBN, and BRIP1. Among all participants, 56 of 518 (11%) had a variant with conflicting interpretations ranging from pathogenic/likely pathogenic to VUS, a discrepancy that may alter medical management. Conflicting interpretation of genetic findings from multiplex panel testing used in clinical practice is frequent and may have implications for medical management decisions

    Genetic Analysis of the Early Natural History of Epithelial Ovarian Carcinoma

    Get PDF
    The high mortality rate associated with epithelial ovarian carcinoma (EOC) reflects diagnosis commonly at an advanced stage, but improved early detection is hindered by uncertainty as to the histologic origin and early natural history of this malignancy.Here we report combined molecular genetic and morphologic analyses of normal human ovarian tissues and early stage cancers, from both BRCA mutation carriers and the general population, indicating that EOCs frequently arise from dysplastic precursor lesions within epithelial inclusion cysts. In pathologically normal ovaries, molecular evidence of oncogenic stress was observed specifically within epithelial inclusion cysts. To further explore potential very early events in ovarian tumorigenesis, ovarian tissues from women not known to be at high risk for ovarian cancer were subjected to laser catapult microdissection and gene expression profiling. These studies revealed a quasi-neoplastic expression signature in benign ovarian cystic inclusion epithelium compared to surface epithelium, specifically with respect to genes affecting signal transduction, cell cycle control, and mitotic spindle formation. Consistent with this gene expression profile, a significantly higher cell proliferation index (increased cell proliferation and decreased apoptosis) was observed in histopathologically normal ovarian cystic compared to surface epithelium. Furthermore, aneuploidy was frequently identified in normal ovarian cystic epithelium but not in surface epithelium.Together, these data indicate that EOC frequently arises in ovarian cystic inclusions, is preceded by an identifiable dysplastic precursor lesion, and that increased cell proliferation, decreased apoptosis, and aneuploidy are likely to represent very early aberrations in ovarian tumorigenesis

    Personalized medicine: new genomics, old lessons

    Get PDF
    Personalized medicine uses traditional, as well as emerging concepts of the genetic and environmental basis of disease to individualize prevention, diagnosis and treatment. Personalized genomics plays a vital, but not exclusive role in this evolving model of personalized medicine. The distinctions between genetic and genomic medicine are more quantitative than qualitative. Personalized genomics builds on principles established by the integration of genetics into medical practice. Principles shared by genetic and genomic aspects of medicine, include the use of variants as markers for diagnosis, prognosis, prevention, as well as targets for treatment, the use of clinically validated variants that may not be functionally characterized, the segregation of these variants in non-Mendelian as well as Mendelian patterns, the role of gene–environment interactions, the dependence on evidence for clinical utility, the critical translational role of behavioral science, and common ethical considerations. During the current period of transition from investigation to practice, consumers should be protected from harms of premature translation of research findings, while encouraging the innovative and cost-effective application of those genomic discoveries that improve personalized medical care

    Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Analysis of genetic variation in Ashkenazi Jews by high density SNP genotyping.

    Get PDF
    BACKGROUND: Genetic isolates such as the Ashkenazi Jews (AJ) potentially offer advantages in mapping novel loci in whole genome disease association studies. To analyze patterns of genetic variation in AJ, genotypes of 101 healthy individuals were determined using the Affymetrix EAv3 500 K SNP array and compared to 60 CEPH-derived HapMap (CEU) individuals. 435,632 SNPs overlapped and met annotation criteria in the two groups. RESULTS: A small but significant global difference in allele frequencies between AJ and CEU was demonstrated by a mean FST of 0.009 (P < 0.001); large regions that differed were found on chromosomes 2 and 6. Haplotype blocks inferred from pairwise linkage disequilibrium (LD) statistics (Haploview) as well as by expectation-maximization haplotype phase inference (HAP) showed a greater number of haplotype blocks in AJ compared to CEU by Haploview (50,397 vs. 44,169) or by HAP (59,269 vs. 54,457). Average haplotype blocks were smaller in AJ compared to CEU (e.g., 36.8 kb vs. 40.5 kb HAP). Analysis of global patterns of local LD decay for closely-spaced SNPs in CEU demonstrated more LD, while for SNPs further apart, LD was slightly greater in the AJ. A likelihood ratio approach showed that runs of homozygous SNPs were approximately 20% longer in AJ. A principal components analysis was sufficient to completely resolve the CEU from the AJ. CONCLUSION: LD in the AJ versus was lower than expected by some measures and higher by others. Any putative advantage in whole genome association mapping using the AJ population will be highly dependent on regional LD structure

    A combined analysis of outcome following breast cancer: differences in survival based on BRCA1/BRCA2 mutation status and administration of adjuvant treatment

    Get PDF
    BACKGROUND: The prognostic significance of germline mutations in BRCA1 and BRCA2 in women with breast cancer remains unclear. A combined analysis was performed to address this uncertainty. METHODS: Two retrospective cohorts of Ashkenazi Jewish women undergoing breast-conserving treatment for invasive cancer between 1980 and 1995 (n = 584) were established. Archived tissue blocks were used as the source of DNA for Ashkenazi Jewish BRCA1/BRCA2 founder mutation analysis. Paraffin-embedded tissue and follow-up information was available for 505 women. RESULTS: Genotyping was successful in 496 women, of whom 56 (11.3%) were found to carry a BRCA1/BRCA2 founder mutation. After a median follow-up period of 116 months, breast cancer specific survival was worse in women with BRCA1 mutations than in those without (62% at 10 years versus 86%; P < 0.0001), but not in women with the BRCA2 mutation (84% versus 86% at 10 years; P = 0.76). Germline BRCA1 mutations were an independent predictor of breast cancer mortality in multivariate analysis (hazard ratio 2.4, 95% confidence interval 1.2–4.8; P = 0.01). BRCA1 status predicted breast cancer mortality only among women who did not receive chemotherapy (hazard ratio 4.8, 95% confidence interval 2.0–11.7; P = 0.001). The risk for metachronous ipsilateral cancer was not greater in women with germline BRCA1/BRCA2 founder mutations than in those without mutations (P = 0.68). CONCLUSION: BRCA1 mutations, but not BRCA2 mutations, are associated with reduced survival in Ashkenazi women undergoing breast-conserving treatment for invasive breast cancer, but the poor prognosis associated with germline BRCA1 mutations is mitigated by adjuvant chemotherapy. The risk for metachronous ipsilateral disease does not appear to be increased for either BRCA1 or BRCA2 mutation carriers, at least up to 10 years of follow up
    corecore