34 research outputs found

    Radio observations of four anticenter 2CG gamma-ray sources

    Get PDF
    The 2CG sources 218-00, 135+01, 121+04 and 95+04 have been observed at two radio frequencies and the flux values and spectra of the radio sources observed within the gamma-ray fields are catalogued down to a sensitivity of approx 30 mJy at lambda 11 cm. Possible gamma-ray counterpart candidate objects are briefly discussed

    SAS-2 observations of the diffuse gamma radiation in the galactic latitude interval 10 deg absolute b or equal to 90 deg

    Get PDF
    An analysis of all of the second small astronomy satellite gamma-ray data for galactic latitudes with the absolute value of b 10 deg has shown that the intensity varies with galactic latitude, being larger near 10 deg than 90 deg. For energies above 100 MeV the gamma-ray data are consistent with a latitude distribution of the form I(b) = C sub 1 + C sub 2/sin b, with the second term being dominant. This result suggests that the radiation above 100 MeV is coming largely from local regions of the galactic disk. Between 35 and 100 MeV, a similar equation is also a good representation of the data, but here the two terms are comparable. These results indicate that the diffuse radiation above 35 MeV consists of two parts, one with a relatively hard galactic component and the other an isotropic, steep spectral component which extrapolates back well to the low energy diffuse radiation. The steepness of the diffuse isotropic component places significant constraints on possible theoretical models of this radiation

    Cyg X-3: Not seen in high-energy gamma rays by COS-B

    Get PDF
    COS-B had Cyg X-3 within its field of view during 7 observation periods between 1975 and 1982 for in total approximately 300 days. In the skymaps (70 meV E 5000 meV) of the Cyg-X region produced for each of these observations and in the summed map, a broad complex structure is visible in the region 72 deg approximately less than 1 approximately less than 85 deg, approximately less than 5 deg. No resolved source structure is visible at the position of Cyg X-3, but a weak signal from Cyg X-3 could be hidden in the structured gamma-ray background. Therefore, the data has been searched for a 4.8 h timing signature, as well as for a source signal in the sky map in addition to the diffuse background structure as estimated from tracers of atomic and molecular gas

    High energy gamma ray results from the second small astronomy satellite

    Get PDF
    A high energy (35 MeV) gamma ray telescope employing a thirty-two level magnetic core spark chamber system was flown on SAS 2. The high energy galactic gamma radiation is observed to dominate over the general diffuse radiation along the entire galactic plane, and when examined in detail, the longitudinal and latitudinal distribution seem generally correlated with galactic structural features, particularly with arm segments. The general high energy gamma radiation from the galactic plane, explained on the basis of its angular distribution and magnitude, probably results primarily from cosmic ray interactions with interstellar matter

    Lynx Mission Concept Status

    Get PDF
    Lynx is a concept under study for prioritization in the 2020 Astrophysics Decadal Survey. Providing orders of magnitude increase in sensitivity over Chandra, Lynx will examine the first black holes and their galaxies, map the large-scale structure and galactic halos, and shed new light on the environments of young stars and their planetary systems. In order to meet the Lynx science goals, the telescope consists of a high-angular resolution optical assembly complemented by an instrument suite that may include a High Definition X-ray Imager, X-ray Microcalorimeter and an X-ray Grating Spectrometer. The telescope is integrated onto the spacecraft to form a comprehensive observatory concept. Progress on the formulation of the Lynx telescope and observatory configuration is reported in this paper

    The Influence of reactive oxygen species on pathophysiological mechanisms of Dupuytren's disease

    No full text

    Hamster polyomavirus-derived virus-like particles are able to transfer in vitro encapsidated plasmid DNA to mammalian cells

    No full text
    The authentic major capsid protein 1 (VP1) of hamster polyomavirus (HaPyV) consists of 384 amino acid (aa) residues (42 kDa). Expression from an additional in-frame initiation codon located upstream from the authentic VP1 open reading frame (at position -4) might result in the synthesis of a 388 aa-long, amino-terminally extended VP1 (aa -4 to aa 384; VP1(ext)). In a plasmid-mediated Drosophila Schneider (S2) cell expression system, both VP1 derivatives as well as a VP1(ext) variant with an amino acid exchange of the authentic Met1Gly (VP1(ext-M1)) were expressed to a similar high level. Although all three proteins were detected in nuclear as well as cytoplasmic fractions, formation of virus-like particles (VLPs) was observed exclusively in the nucleus as confirmed by negative staining electron microscopy. The use of a tryptophan promoter-driven Escherichia coli expression system resulted in the efficient synthesis of VP1 and VP1(ext) and formation of VLPs. In addition, establishment of an in vitro disassembly/reassembly system allowed the encapsidation of plasmid DNA into VLPs. Encapsidated DNA was found to be protected against the action of DNase I. Mammalian COS-7 and CHO cells were transfected with HaPyV-VP1-VLPs carrying a plasmid encoding enhanced green fluorescent protein (eGFP). In both cell lines eGFP expression was detected indicating successful transfer of the plasmid into the cells, though at a still low level. Cesium chloride gradient centrifugation allowed the separation of VLPs with encapsidated DNA from 'empty' VLPs, which might be useful for further optimization of transfection. Therefore, heterologously expressed HaPyV-VP1 may represent a promising alternative carrier for foreign DNA in gene transfer applications

    Low-energy dipole strength in Sn-112,Sn-120

    No full text
    WOS: 000341166100003The Sn-112,Sn-120(gamma, gamma') reactions below the neutron separation energies have been studied at the superconducting Darmstadt electron linear accelerator S-DALINAC for different endpoint energies of the incident bremsstrahlung spectrum. Dipole strength distributions are extracted for Sn-112 up to 9.5 MeV and for Sn-120 up to 9.1 MeV. A concentration of dipole excitations is observed between 5 and 8 MeV in both nuclei. Missing strength due to unobserved decays to excited states is estimated in a statistical model. A fluctuation analysis is applied to the photon scattering spectra to extract the amount of the unresolved strength hidden in the background due to fragmentation. The strength distributions are discussed within different model approaches such as the quasiparticle-phonon model and the relativistic time blocking approximation, allowing for an inclusion of complex configurations beyond the initial particle-hole states. While a satisfactory description of the fragmentation can be achieved for sufficiently large model spaces, the predicted centroids and total electric dipole strengths for stable tin isotopes strongly depend on the assumptions about the underlying mean field.DAAD; DFG [SFB 634]; Alliance Program of the Helmholtz Association [HA216/EMMI]; BMBF [06GI9109]; US-NSF [PHY-1204486]; National Superconducting Cyclotron Laboratory at Michigan State UniversityR. Eichhorn and the S-DALINAC crew are thanked for their effort in providing excellent beams and the GSI for the loan of the enriched 112Sn target. We are grateful to V. Yu. Ponomarev for providing us with the results of his calculations and for important discussions. We are indebted to F. Siebenhuhner for his contribution to the analysis of the data. B.O-T. acknowledges financial support from the DAAD sandwich program during her stay in Germany. This work was supported by the DFG under Contract No. SFB 634, by the Alliance Program of the Helmholtz Association (HA216/EMMI), by BMBF Project No. 06GI9109, and by US-NSF Grant No. PHY-1204486 and the National Superconducting Cyclotron Laboratory at Michigan State University
    corecore