452 research outputs found

    The Sparsest Clusters With O Stars

    Full text link
    There is much debate on how high-mass star formation varies with environment, and whether the sparsest star-forming environments are capable of forming massive stars. To address this issue, we have observed eight apparently isolated OB stars in the SMC using HST's Advanced Camera for Surveys. Five of these objects appear as isolated stars, two of which are confirmed to be runaways. The remaining three objects are found to exist in sparse clusters, with <10 companion stars revealed, having masses of 1-4 solar mass. Stochastic effects dominate in these sparse clusters, so we perform Monte Carlo simulations to explore how our observations fit within the framework of empirical, galactic cluster properties. We generate clusters using a simplistic -2 power-law distribution for either the number of stars per cluster (N_*) or cluster mass (M_cl). These clusters are then populated with stars randomly chosen from a Kroupa IMF. We find that simulations with cluster lower-mass limits of M_cl,lo >20 solar mass and N_*,lo >40 match best with observations of SMC and Galactic OB star populations. We examine the mass ratio of the second-most massive and most massive stars (m_max,2/m_max), finding that our observations all exist below the 20th percentile of our simulated clusters. However, all of our observed clusters lie within the parameter space spanned by the simulated clusters, although some are in the lowest 5th percentile frequency. These results suggest that clusters are built stochastically by randomly sampling stars from a universal IMF with a fixed stellar upper-mass limit. In particular, we see no evidence to suggest a m_max - M_cl relation. Our results may be more consistent with core accretion models of star formation than with competitive accretion models, and they are inconsistent with the proposed steepening of the integrated galaxy IMF (IGIMF).Comment: 19 pages, 12 figures, accepted for publication in Ap

    More Evidence on the Presence of an Unknown Toxic Substance(s) in the Sagabean

    Full text link
    Saga (Adenanthera pavonina Linn) tergolong kacang-kacangan (Leguminosae), maka diduga se­perti juga hampir semua kacang-kacangan, mengandung faktor-faktor "anti-nutrisi", seperti trypsin inhibitor, fitohaemagglutinin dan saponin. Telah diketahui bahwa ada beberapa kacang-kacangan, yang di samping faktor "anti-nutrisi", juga mengandung zat beracun seperti: koro wedus (Dolichos lablab) dan kratok (Phaseolus lunatus), yang mengandung sianida (HCN), lamtoro (Leucaena glauca) yang mengandung mimosine, dan saga (Abrus precatorius Linn) ycng mengandung racun abrin. Timbul pertanyaan apakah biji saga juga mengandung racun, di samping faktor anti-nutrisi tersebut di atas. Pada biji saga yang telah dikuliti, direndam, dicuci dan direbus dapat dianggap bahwa faktor-faktor anti-nutrisinya telah hilang. Tetapi walaupun demikian terbukti dengan percobaan tikus putih muda, bahwa biji saga yang telah diolah tetap hanya dimakan sedikit saja, juga bila ditambah dengan methio­nine dan threonine, dua asam amino yang sudah diketahui sangat terbatas kadarnya dalam protein biji saga. Dari percobaan ini dapat ditarik kesimpulan, bahwa dalam biji saga juga terdapat suatu zat toksik (racun) yang tidak dapat dihilangkan dengan cara pengolahan tersebut di atas

    An anisotropic distribution of spin vectors in asteroid families

    Full text link
    Current amount of ~500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study not only the spin-vector properties of the whole population of MBAs, but also of several individual collisional families. We create a data set of 152 asteroids that were identified by the HCM method as members of ten collisional families, among them are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes. The remaining models are adopted from the DAMIT database or the literature. We revise the preliminary family membership identification by the HCM method according to several additional criteria - taxonomic type, color, albedo, maximum Yarkovsky semi-major axis drift and the consistency with the size-frequency distribution of each family, and consequently we remove interlopers. We then present the spin-vector distributions for eight asteroidal families. We use a combined orbital- and spin-evolution model to explain the observed spin-vector properties of objects among collisional families. In general, we observe for studied families similar trends in the (a_p, \beta) space: (i) larger asteroids are situated in the proximity of the center of the family; (ii) asteroids with \beta>0{\deg} are usually found to the right from the family center; (iii) on the other hand, asteroids with \beta<0{\deg} to the left from the center; (iv) majority of asteroids have large pole-ecliptic latitudes (|\beta|\gtrsim 30{\deg}); and finally (v) some families have a statistically significant excess of asteroids with \beta>0{\deg} or \beta<0{\deg}. Our numerical simulation of the long-term evolution of a collisional family is capable of reproducing well the observed spin-vector properties. Using this simulation, we also independently constrain the age of families Flora (1.0\pm0.5 Gyr) and Koronis (2.5-4 Gyr).Comment: Accepted for publication in A&A (September 16, 2013

    Massive Field Stars and the Stellar Clustering Law

    Full text link
    The distribution of N*, the number of OB stars per association or cluster, appears to follow a universal power-law form N2N*^{-2} in the local Universe. We evaluate the distribution of N* in the Small Magellanic Cloud using recent broadband optical and space-ultraviolet data, with special attention to the lowest values of N*. We find that the power-law distribution in N* continues smoothly down to N*=1. This strongly suggests that the formation of field massive stars is a continuous process with those in associations, and that the field stars do not originate from a different star formation mode. Our results are consistent with the model that field massive stars represent the most massive members in groups of smaller stars, as expected if the clustering law applies to much lower masses as is expected from the stellar initial mass function (IMF). These results are consistent with the simultaneous existence of a universal IMF and a universal clustering law. Jointly, these laws imply that the fraction of field OB stars typically ranges from about 35% to 7% for most astrophysical situations, with an inverse logarithmic dependence on the most populous cluster, and hence, on galaxy size and/or star formation rate. There are important consequences for global feedback effects in galaxies: field stars should therefore contribute proportionately to the volume of the warm ionized medium, and equal relative contributions by superbubbles of all sizes to the interstellar porosity are expected.Comment: Accepted by AJ. 13 pages, 9 figures in 11 files, uses emulateapj.st

    Past and present star formation in the SMC: NGC 346 and its neighborhood

    Get PDF
    In the quest of understanding how star formation occurs and propagates in the low metallicity environment of the Small Magellanic Cloud (SMC), we acquired deep F555W (~V), and F814W (~I) HST/ACS images of the young and massive star forming region NGC 346. These images and their photometric analysis provide us with a snapshot of the star formation history of the region. We find evidence for star formation extending from ~10 Gyr in the past until ~150 Myr in the field of the SMC. The youngest stellar population (~3 +/- 1 Myr) is associated with the NGC 346 cluster. It includes a rich component of low mass pre-main sequence stars mainly concentrated in a number of sub-clusters, spatially co- located with CO clumps previously detected by Rubio et al. (2000). Within our analysis uncertainties, these sub-clusters appear coeval with each other. The most massive stars appear concentrated in the central sub-clusters, indicating possible mass segregation. A number of embedded clusters are also observed. This finding, combined with the overall wealth of dust and gas, could imply that star formation is still active. An intermediate age star cluster, BS90, formed ~4.3 +/-0.1 Gyr ago, is also present in the region. Thus, this region of the SMC has supported star formation with varying levels of intensity over much of the cosmic time.Comment: 38 pages, 13 figures, 3 tables; AJ accepte

    A Fractal Analysis of the HI Emission from the Large Magellanic Cloud

    Full text link
    A composite map of HI in the LMC using the ATCA interferometer and the Parkes multibeam telescope was analyzed in several ways in an attempt to characterize the structure of the neutral gas and to find an origin for it. Fourier transform power spectra in 1D, 2D, and in the azimuthal direction were found to be approximate power laws over 2 decades in length. Delta-variance methods also showed the same power-law structure. Detailed models of these data were made using line-of-sight integrals over fractals that are analogous to those generated by simulations of turbulence with and without phase transitions. The results suggested a way to measure directly for the first time the line-of-sight thickness of the cool component of the HI disk of a nearly face-on galaxy. The signature of this thickness was found to be present in all of the measured power spectra. The character of the HI structure in the LMC was also viewed by comparing positive and negative images of the integrated emission. The geometric structure of the high-emission regions was found to be filamentary, whereas the geometric structure of the low-emission (intercloud) regions was found to be patchy and round. This result suggests that compressive events formed the high-emission regions, and expansion events, whether from explosions or turbulence, formed the low-emission regions. The character of the structure was also investigated as a function of scale using unsharp masks. All of these results suggest that most of the ISM in the LMC is fractal, presumably the result of pervasive turbulence, self-gravity, and self-similar stirring.Comment: 30 pages, 21 figures, scheduled for ApJ Vol 548n1, Feb 10, 200
    corecore