43 research outputs found

    Structure of 10Be from the 12C 12C,14O 10Be reaction

    Get PDF
    The 12C 12C,14O two proton pick up reaction has been measured at 211.4 MeV incident energy to study the structure of states of 10Be up to excitation energies of 12 MeV. The measured partial angular distributions show pronounced oscillatory shapes, which were described by coupled reaction channels calculations. Spin parity assignments could be derived from these characteristic shapes and two definite assignments have been made. The state at 11.8 MeV has been identified as the 4 member of the ground state band, and the state at 10.55 MeV is assigned J pi 3 . At 5.96 MeV only the 1 1 member of the known 2 2 1 1 doublet is populated. The angular distribution of the peak at 9.50 MeV, which consists of several unresolved states, has been unfolded using contributions from known states at 9.56 MeV, 2 , and 9.27 MeV, 4 . The inclusion of a state at 9.4 MeV reported by Daito it et al. from the 10B t,3He 10Be reaction and tentatively assigned 3 improved the fit considerably. A K 2 band is formed with the 2 2 state as the band head and the 3 state as the second member. The structures of the K pi 0 1, 2 2, and 1 1 bands are discusse

    Fission decay of N = Z nuclei at high angular momentum: 60^{60}Zn

    Get PDF
    Using a unique two-arm detector system for heavy ions (the BRS, binary reaction spectrometer) coincident fission events have been measured from the decay of 60^{60}Zn compound nuclei formed at 88MeV excitation energy in the reactions with 36^{36}Ar beams on a 24^{24}Mg target at Elab(36E_{lab}(^{36}Ar) = 195 MeV. The detectors consisted of two large area position sensitive (x,y) gas telescopes with Bragg-ionization chambers. From the binary coincidences in the two detectors inclusive and exclusive cross sections for fission channels with differing losses of charge were obtained. Narrow out-of-plane correlations corresponding to coplanar decay are observed for two fragments emitted in binary events, and in the data for ternary decay with missing charges from 4 up to 8. After subtraction of broad components these narrow correlations are interpreted as a ternary fission process at high angular momentum through an elongated shape. The lighter mass in the neck region consists dominantly of two or three-particles. Differential cross sections for the different mass splits for binary and ternary fission are presented. The relative yields of the binary and ternary events are explained using the statistical model based on the extended Hauser-Feshbach formalism for compound nucleus decay. The ternary fission process can be described by the decay of hyper-deformed states with angular momentum around 45-52 hbarhbar.Comment: 23 pages, 25 figure

    Particle-gamma coincidences and coplanarity in the 32S+24Mg^{32}S+^{24}Mg binary reaction

    Get PDF
    The reaction 32S (165.4 MeV) + 24Mg is studied using the binary reaction spec- trometer (BRS) coupled to the Euroball germanium array. Particle-particle-gamma and particle-gamma-gamma coincidences have been examined. The Z-identification, position and energy information for binary reaction products are shown together with the Doppler-shift corrected gamma-rays emitted from the fragments. Recent reports of evi- dence for hyper-deformation from angular correlations in similar data are also in- vestigated. Analogous out-of-plane angular correlations are observed but attributed to reactions with the target contaminants 16O and 12C

    Coplanar Ternary Cluster Decay of Hyper-deformed 56^{56}Ni

    Get PDF
    Coincidences between two heavy fragments have been measured from fission of 56Ni compound nuclei, formed in the 32S + 24Mg reaction at Elab(32S) = 163.5 MeV. A unique experimental set-up consisting of two large area position sensitive (x, y) gas-detector telescopes has been used allowing the complete determination of the observed fragments, and their momentum vectors. In addition to binary fission events with subsequent particle evaporation, narrow out-of-plane correlations are observed for two fragments emitted in purely binary events and in events with a missing mass consisting of 2α\alpha and 3α\alpha particles(12C). These events are interpreted as ternary cluster decay from 56Ni-nuclei at high angular momenta through hyper-deformed shape

    Clusters in Light Nuclei

    Full text link
    A great deal of research work has been undertaken in the alpha-clustering study since the pioneering discovery, half a century ago, of 12C+12C molecular resonances. Our knowledge of the field of the physics of nuclear molecules has increased considerably and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. In this work, the occurence of "exotic" shapes in light N=Z alpha-like nuclei is investigated. Various approaches of superdeformed and hyperdeformed bands associated with quasimolecular resonant structures are presented. Results on clustering aspects are also discussed for light neutron-rich Oxygen isotopes.Comment: 12 pages, 5 figures. Invited Talk presented by C. Beck at the Zakopane Conference on Nuclear Physics "Extremes of the Nuclear Landscape" XLV in the series of Zakopane Schools of Physics - International Symposium - Zakopane, Poland, August 30 - September 5, 2010.To be publihed in Acta Physica Polonica B42 no 3, March 201

    Nuclei, Superheavy Nuclei and Hypermatter in a chiral SU(3)-Modell

    Full text link
    A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.Comment: 19 pages, 11 figure

    Measurement of alpha and neutron decay widths of excited states of C-14

    Get PDF
    The 12C 16O,14O 14C reaction was studied at a beam energy of 234 MeV. The 14O ejectile was detected by a Q3D spectrometer at forward angles. The energies and angles of the excited 14C recoil break up fragments were measured in coincidence with the 14O ejectile using a double sided silicon strip detector array at backward angles. A complete kinematic reconstruction of the reaction was performed to reconstruct the 14C rightarrow 10Be and 14C rightarrow 13 n decay channels and the branching ratios and widths of these decays were calculated. Theoretical decay branches were calculated using barrier penetrability factors and were compared to the measured ratios to provide information on the spins, parities, and configurations of the states. Neutron emission was found to be favored for the 11.73, 12.96, 14.87,16.72, and 18.6 MeV states. The 14.87, 18.6, and 21.4 MeV states were found to have a considerable width for decay and are candidates for the three bodied molecular cluster structure of 14

    Electrophysiological correlates of selective attention: A lifespan comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To study how event-related brain potentials (ERPs) and underlying cortical mechanisms of selective attention change from childhood to old age, we investigated lifespan age differences in ERPs during an auditory oddball task in four age groups including 24 younger children (9–10 years), 28 older children (11–12 years), 31 younger adults (18–25), and 28 older adults (63–74 years). In the Unattend condition, participants were asked to simply listen to the tones. In the Attend condition, participants were asked to count the deviant stimuli. Five primary ERP components (N1, P2, N2, P3 and N3) were extracted for deviant stimuli under Attend conditions for lifespan comparison. Furthermore, Mismatch Negativity (MMN) and Late Discriminative Negativity (LDN) were computed as difference waves between deviant and standard tones, whereas Early and Late Processing Negativity (EPN and LPN) were calculated as difference waves between tones processed under Attend and Unattend conditions. These four secondary ERP-derived measures were taken as indicators for change detection (MMN and LDN) and selective attention (EPN and LPN), respectively. To examine lifespan age differences, the derived difference-wave components for attended (MMN and LDN) and deviant (EPN and LPN) stimuli were specifically compared across the four age groups.</p> <p>Results</p> <p>Both primary and secondary ERP components showed age-related differences in peak amplitude, peak latency, and topological distribution. The P2 amplitude was higher in adults compared to children, whereas N2 showed the opposite effect. P3 peak amplitude was higher in older children and younger adults than in older adults. The amplitudes of N3, LDN, and LPN were higher in older children compared with both of the adult groups. In addition, both P3 and N3 peak latencies were significantly longer in older than in younger adults. Interestingly, in the young adult sample P3 peak amplitude correlated positively and P3 peak latency correlated negatively with performance in the Identical Picture test, a marker measure of fluid intelligence.</p> <p>Conclusion</p> <p>The present findings suggest that patterns of event-related brain potentials are highly malleable within individuals and undergo profound reorganization from childhood to adulthood and old age.</p

    New assignments for 10Be states from the 12C 12C14O 10Be reaction

    No full text
    The two proton pick up reaction 12C 12C,14O 10Be has been measured at 211.4 MeV incident energy to study the structure of 10Be states. This reaction populates most strongly 0 and 2 two proton hole configurations in the 1p shell, but also odd parity states. A two step mechanism is needed in the latter case with particle hole excitations of the type 1p 1 2s1d 1 in inelastic excitation including neutron excitations in the one step, and the pick up of a pair of protons from 12C in the other step. For all observed states the oscillatory structure of the angular distributions is characteristic of their spins, as can be verified for states with known spins. In this way we can make the firm spin assignments of 4 and 3 for the states at 11.8 MeV and 10.55 MeV, respectively. From the reaction mechanism, which offers optimum conditions to populate the 4 configuration in the 1p shell, and from the J J 1 rule for excitation energies within a rotational band we conclude, that the assigned 4 state is most probably a member of the ground state band of 10B
    corecore