982 research outputs found

    Particle size distribution of suspended solids in the Chesapeake Bay entrance and adjacent shelf waters

    Get PDF
    Characteristics of suspended solids, including total suspended matter, total suspended inorganics, total suspended organics, particle size distribution, and the presence of the ten most prominent particle types were determined. Four research vessels simultaneously collected samples along four transects. Samples were collected within a 2-hour period that coincided with the maximum ebb penetration of Chesapeake Bay outwelling. The distribution of primary and secondary particle size modes indicate the presence of a surface or near-surface plume, possibly associated with three sources: (1) runoff, (2) resuspension of material within the Bay, and/or (3) resuspension of material in the area of shoals at the Bay mouth. Additional supportive evidence for this conclusion is illustrated with ocean color scanner data

    Characteristics of total suspended matter and associated hydrocarbon concentration adjacent to the Chesapeake Bay entrance

    Get PDF
    Methodologies used to determine concentrations of hydrocarbons and associated suspended particulates at stations in and adjacent to the entrance to the Chesapeake Bay are described and the results are presented. Passive and active remote sensing data were acquired in conjunction with sea truth data collection

    Suspended particulate matter in the Chesapeake Bay entrance and adjacent shelf waters

    Get PDF
    Approximately 400 samples were collected from the mouth of the Chesapeake Bay for various analyses, including 138 for suspended solids. Characteristics of suspended solids that were analyzed included: total suspended matter; total suspended inorganics, total suspended organics; percent organics; particle size distribution; and presence or absence of 11 of the most prominent particle types

    The relationship among sea surface roughness variations, oceanographic analyses, and airborne remote sensing analyses

    Get PDF
    The synthetic aperture radar (SAR) was studied to determine whether it could image large scale estuaries and oceanic features such as fronts and to explain the electromagnetic interaction between SAR and the individual surface front features. Fronts were observed to occur at the entrance to the Chesapeake Bay. The airborne measurements consisted of data collection by SAR onboard an F-4 aircraft and real aperture side looking radar (SLAR) in Mohawk aircraft. A total of 89 transects were flown. Surface roughness and color as well as temperature and salinity were evaluated. Cross-frontal surveys were made. Frontal shear and convergence flow were obtained. Surface active organic materials, it was indicated, are present at the air-sea interface. In all, 2000 analyses were conducted to characterize the spatial and temporal variabilities associated with water mass boundaries

    Advances in the knowledge of the inocybe mixtilis group (Inocybaceae, Agaricomycetes), through molecular and morphological studies

    Get PDF
    Inocybe mixtilis constitutes a complex of species characterized by nodulose-angulose spores, absence of cortina and a more or less bulbous marginate stipe that is not darkening when desiccated. In order to elucidate species limits within the I. mixtilis complex, an ITS-RPB2 phylogeny was performed and interpreted using morphological and ecological characters. Six supported clades were obtained in our analyses that correspond to I. mixtilis, I. subtrivialis, and four new species to science: I. ceskae, I. johannis-stanglii, I. nothomixtilis and I. occulta. Species within this complex can be morphologically recognized through a unique combination of morphological characters, such as the spore shape, cystidial length and shape, presence and development of the velipellis and pileus colour and viscidity. Nevertheless, those characters overlap, especially among I. mixtilis, I. ceskae and I. occulta, and intermediate collections are therefore more reliably identified through ITS-sequencing. Two species, I. ceskae and I. occulta are present in both North America and Europe, while the rest are so far only known in Europe, or Europe and Asia (I. mixtilis). All species, except I. johannis-stanglii, seem to be able to establish ectomycorrhizal association both with conifers and angiosperms. Descriptions, colour illustrations and a key to all known species in the I. mixtilis group are provided

    Meson loop effects in the NJL model at zero and non-zero temperature

    Full text link
    We compare two different possibilities to include meson-loop corrections in the Nambu-Jona-Lasinio model: a strict 1/N_c-expansion in next-to-leading order and a non-perturbative scheme corresponding to a one-meson-loop approximation to the effective action. Both schemes are consistent with chiral symmetry, in particular with the Goldstone theorem and the Gell-Mann-Oakes-Renner relation. The numerical part at zero temperature focuses on the pion and the rho-meson sector. For the latter the meson-loop-corrections are crucial in order to include the dominant rho -> pipi-decay channel, while the standard Hartree + RPA approximation only contains unphysical qqbar-decay channels. We find that m_\pi, f_\pi, and quantities related to the rho-meson self-energy can be described reasonably with one parameter set in the 1/N_c-expansion scheme, whereas we did not succeed to obtain such a fit in the non-perturbative scheme. We also investigate the temperature dependence of the quark condensate. Here we find consistency with chiral perturbation theory to lowest order. Similarities and differences of both schemes are discussed.Comment: 51 pages, 18 figures, to be published in Physics of Atomic Nuclei, the volume dedicated to the 90th birthday of A.B. Migdal, error in Eq. 4.22 correcte

    Predicting Climate-Driven Coastlines With a Simple and Efficient Multiscale Model

    Get PDF
    Ocean-basin-scale climate variability produces shifts in wave climates and water levels affecting the coastlines of the basin. Here we present a hybrid shoreline change?foredune erosion model (A COupled CrOss-shOre, loNg-shorE, and foreDune evolution model, COCOONED) intended to inform coastal planning and adaptation. COCOONED accounts for coupled longshore and cross-shore processes at different timescales, including sequencing and clustering of storm events, seasonal, interannual, and decadal oscillations by incorporating the effects of integrated varying wave action and water levels for coastal hazard assessment. COCOONED is able to adapt shoreline change rates in response to interactions between longshore transport, cross-shore transport, water level variations, and foredune erosion. COCOONED allows for the spatial and temporal extension of survey data using global data sets of waves and water levels for assessing the behavior of the shoreline at multiple time and spatial scales. As a case study, we train the model in the period 2004?2014 (11 years) with seasonal topographic beach profile surveys from the North Beach Sub-cell (NBSC) of the Columbia River Littoral Cell (Washington, USA).We explore the shoreline response and foredune erosion along 40 km of beach at several timescales during the period 1979?2014 (35 years), revealing an accretional trend producing reorientation of the beach, cross-shore accretional, and erosional periods through time (breathing) and alternating beach rotations that are correlated with climate indices.J. A. A. Antolínez and F. J. Méndez acknowledge the support of the Spanish “Ministerio de Economia y Competitividad” under Grant BIA2014-59643-R

    Critical temperature for kaon condensation in color-flavor locked quark matter

    Full text link
    We study the behavior of Goldstone bosons in color-flavor-locked (CFL) quark matter at nonzero temperature. Chiral symmetry breaking in this phase of cold and dense matter gives rise to pseudo-Goldstone bosons, the lightest of these being the charged and neutral kaons K^+ and K^0. At zero temperature, Bose-Einstein condensation of the kaons occurs. Since all fermions are gapped, this kaon condensed CFL phase can, for energies below the fermionic energy gap, be described by an effective theory for the bosonic modes. We use this effective theory to investigate the melting of the condensate: we determine the temperature-dependent kaon masses self-consistently using the two-particle irreducible effective action, and we compute the transition temperature for Bose-Einstein condensation. Our results are important for studies of transport properties of the kaon condensed CFL phase, such as bulk viscosity.Comment: 24 pages, 8 figures, v2: new section about effect of electric neutrality on critical temperature added; references added; version to appear in J.Phys.

    Dispersive representation and shape of the Kl3 form factors: robustness

    Full text link
    An accurate low-energy dispersive parametrization of the scalar Kpi form factor was constructed some time ago in terms of a single parameter guided by the Callan-Treiman low-energy theorem. A similar twice subtracted dispersive parametrization for the vector Kpi form factor will be investigated here. The robustness of the parametrization of these two form factors will be studied in great detail. In particular the cut-off dependence, the isospin breaking effects and the possible, though not highly probable, presence of zeros in the form factors will be discussed. Interesting constraints in the latter case will be obtained from the soft-kaon analog of the Callan-Treiman theorem and a comparison with the recent tau --> K pi nu_tau data.Comment: 24 pages, 11 figure
    corecore