15 research outputs found

    Testing Approximations of Thermal Effects in Neutron Star Merger Simulations

    Full text link
    We perform three-dimensional relativistic hydrodynamical calculations of neutron star mergers to assess the reliability of an approximate treatment of thermal effects in such simulations by combining an ideal-gas component with zero-temperature, micro-physical equations of state. To this end we compare the results of simulations that make this approximation to the outcome of models with a consistent treatment of thermal effects in the equation of state. In particular we focus on the implications for observable consequences of merger events like the gravitational-wave signal. It is found that the characteristic gravitational-wave oscillation frequencies of the post-merger remnant differ by about 50 to 250 Hz (corresponding to frequency shifts of 2 to 8 per cent) depending on the equation of state and the choice of the characteristic index of the ideal-gas component. In addition, the delay time to black hole collapse of the merger remnant as well as the amount of matter remaining outside the black hole after its formation are sensitive to the description of thermal effects.Comment: 10 pages, 6 figures, 9 eps files; revised with minor additions due to referee comments; accepted by Phys.Rev.

    Gravitational waves from relativistic neutron star mergers with nonzero-temperature equations of state

    Get PDF
    We analyze the gravitational wave (GW) emission from our recently published set of relativistic neutron star (NS) merger simulations and determine characteristic signal features that allow one to link GW measurements to the properties of the merging binary stars. We find that the distinct peak in the GW energy spectrum that is associated with the formation of a hypermassive merger remnant has a frequency that depends strongly on the properties of the nuclear equation of state (EoS) and on the total mass of the binary system, whereas the mass ratio and the NS spins have a weak influence. If the total mass can be determined from the inspiral chirp signal, the peak frequency of the postmerger signal is a sensitive indicator of the EoS.Comment: 5 pages, 4 figures, revised version accepted for publication in PR

    Torus Formation in Neutron Star Mergers and Well-Localized Short Gamma-Ray Bursts

    Full text link
    Merging neutron stars (NSs) are hot candidates for the still enigmatic sources of short gamma-ray bursts (GRBs). If the central engines of the huge energy release are accreting relic black holes (BHs) of such mergers, it is important to understand how the properties of the BH-torus systems, in particular disc masses and mass and rotation rate of the compact remnant, are linked to the characterizing parameters of the NS binaries. For this purpose we present relativistic smoothed particle hydrodynamics simulations with conformally flat approximation of the Einstein field equations and a physical, non-zero temperature equation of state. Thick disc formation is highlighted as a dynamical process caused by angular momentum transfer through tidal torques during the merging process of asymmetric systems or in the rapidly spinning triaxial post-merger object. Our simulations support the possibility that the first well-localized short and hard GRBs 050509b, 050709, 050724, 050813 have originated from NS merger events and are powered by neutrino-antineutrino annihilation around a relic BH-torus system. Using model parameters based on this assumption, we show that the measured GRB energies and durations lead to estimates for the accreted masses and BH mass accretion rates which are compatible with theoretical expectations. In particular, the low energy output and short duration of GRB 050509b set a very strict upper limit of less than 100 ms for the time interval after the merging until the merger remnant has collapsed to a BH, leaving an accretion torus with a small mass of only about 0.01 solar masses. This favors a (nearly) symmetric NS+NS binary with a typical mass as progenitor system.Comment: 12 pages, 9 figures, high-resolution color figures available on request; accepted by MNRA

    Dynamical non-axisymmetric instabilities in rotating relativistic stars

    Full text link
    We present new results on dynamical instabilities in rapidly rotating neutron-stars. In particular, using numerical simulations in full General Relativity, we analyse the effects that the stellar compactness has on the threshold for the onset of the dynamical bar-mode instability, as well as on the appearance of other dynamical instabilities. By using an extrapolation technique developed and tested in our previous study [1], we explicitly determine the threshold for a wide range of compactnesses using four sequences of models of constant baryonic mass comprising a total of 59 stellar models. Our calculation of the threshold is in good agreement with the Newtonian prediction and improves the previous post-Newtonian estimates. In addition, we find that for stars with sufficiently large mass and compactness, the m=3 deformation is the fastest growing one. For all of the models considered, the non-axisymmetric instability is suppressed on a dynamical timescale with an m=1 deformation dominating the final stages of the instability. These results, together with those presented in [1], suggest that an m=1 deformation represents a general and late-time feature of non-axisymmetric dynamical instabilities both in full General Relativity and in Newtonian gravity.Comment: To appear on CQG, NFNR special issue. 16 pages, 5 color figures, movies from http://www.fis.unipr.it/numrel/BarMode/ResearchBarMode.htm

    Relativistic neutron star merger simulations with non-zero temperature equations of state I. Variation of binary parameters and equation of state

    Get PDF
    An extended set of binary neutron star (NS) merger simulations is performed with an approximative conformally flat treatment of general relativity to systematically investigate the influence of the nuclear equation of state (EoS), the neutron star masses, and the NS spin states prior to merging. We employ the two non-zero temperature EoSs of Shen et al. (1998a,b) and Lattimer & Swesty (1991). In addition, we use the cold EoS of Akmal et al. (1998) with a simple ideal-gas-like extension according to Shibata & Taniguchi (2006), and an ideal-gas EoS with parameters fitted to the supernuclear part of the Shen-EoS. We estimate the mass sitting in a dilute high-angular momentum ``torus'' around the future black hole (BH). The dynamics and outcome of the models is found to depend strongly on the EoS and on the binary parameters. Larger torus masses are found for asymmetric systems (up to ~0.3 M_sun for a mass ratio of 0.55), for large initial NSs, and for a NS spin state which corresponds to a larger total angular momentum. We find that the postmerger remnant collapses either immediately or after a short time when employing the soft EoS of Lattimer& Swesty, whereas no sign of post-merging collapse is found within tens of dynamical timescales for all other EoSs used. The typical temperatures in the torus are found to be about 3-10 MeV depending on the strength of the shear motion at the collision interface between the NSs and thus depending on the initial NS spins. About 10^{-3}-10^{-2} M_sun of NS matter become gravitationally unbound during or right after the merging process. This matter consists of a hot/high-entropy component from the collision interface and (only in case of asymmetric systems) of a cool/low-entropy component from the spiral arm tips. (abridged)Comment: 20 pages, 15 figures, accepted for publication in A&A, included changes based on referee comment

    Mass Ejection by Strange Star Mergers and Observational Implications

    Full text link
    We determine the Galactic production rate of strangelets as a canonical input to calculations of the measurable cosmic ray flux of strangelets by performing simulations of strange star mergers and combining the results with recent estimates of stellar binary populations. We find that the flux depends sensitively on the bag constant of the MIT bag model of QCD and disappears for high values of the bag constant and thus more compact strange stars. In the latter case strange stars could coexist with ordinary neutron stars as they are not converted by the capture of cosmic ray strangelets. An unambiguous detection of an ordinary neutron star would then not rule out the strange matter hypothesis.Comment: 5 pages, 2 eps figures; referee comments included, accepted by Phys. Rev. Let

    Strangeness in Astrophysics and Cosmology

    Full text link
    Some recent developments concerning the role of strange quark matter for astrophysical systems and the QCD phase transition in the early universe are addressed. Causality constraints of the soft nuclear equation of state as extracted from subthreshold kaon production in heavy-ion collisions are used to derive an upper mass limit for compact stars. The interplay between the viscosity of strange quark matter and the gravitational wave emission from rotation-powered pulsars are outlined. The flux of strange quark matter nuggets in cosmic rays is put in perspective with a detailed numerical investigation of the merger of two strange stars. Finally, we discuss a novel scenario for the QCD phase transition in the early universe, which allows for a small inflationary period due to a pronounced first order phase transition at large baryochemical potential.Comment: 8 pages, invited talk given at the International Conference on Strangeness in Quark Matter (SQM2009), Buzios, Brasil, September 28 - October 2, 200

    Merger of binary neutron stars of unequal mass in full general relativity

    Full text link
    We present results of three dimensional numerical simulations of the merger of unequal-mass binary neutron stars in full general relativity. A Γ\Gamma-law equation of state P=(Γ1)ρϵP=(\Gamma-1)\rho\epsilon is adopted, where PP, ρ\rho, \varep, and Γ\Gamma are the pressure, rest mass density, specific internal energy, and the adiabatic constant, respectively. We take Γ=2\Gamma=2 and the baryon rest-mass ratio QMQ_M to be in the range 0.85--1. The typical grid size is (633,633,317)(633,633,317) for (x,y,z)(x,y,z) . We improve several implementations since the latest work. In the present code, the radiation reaction of gravitational waves is taken into account with a good accuracy. This fact enables us to follow the coalescence all the way from the late inspiral phase through the merger phase for which the transition is triggered by the radiation reaction. It is found that if the total rest-mass of the system is more than 1.7\sim 1.7 times of the maximum allowed rest-mass of spherical neutron stars, a black hole is formed after the merger irrespective of the mass ratios. The gravitational waveforms and outcomes in the merger of unequal-mass binaries are compared with those in equal-mass binaries. It is found that the disk mass around the so formed black holes increases with decreasing rest-mass ratios and decreases with increasing compactness of neutron stars. The merger process and the gravitational waveforms also depend strongly on the rest-mass ratios even for the range QM=0.85Q_M= 0.85--1.Comment: 32 pages, PRD68 to be publishe

    Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Full text link

    Coalescence of Black Hole-Neutron Star Binaries

    Full text link
    corecore