17 research outputs found

    SuperDARN in Poland : opportunity for atmospheric science research

    No full text
    SuperDARN (Super Dual Auroral Radar Network) jest światową siecią radarów koherentnego rozpraszania w paśmie wysokich częstotliwości HF (High Frequency) do badań górnych warstw atmosfery, mezosfery, jonosfery, termosfery oraz ich sprzężenia z magnetosferą i wiatrem słonecznym. Do głównych tematów badawczych SuperDARN z dziedziny fizyki atmosfery należą echa mezosferyczne, fale planetarne i związane z nimi przemieszczające się zaburzenia jonosferyczne oraz inne przejawy oddziaływania atmosfery neutralnej ze zjonizowaną. W artykule przedstawiamy perspektywy dla rozwoju badań atmosfery z użyciem radarów SuperDARN w kraju, ze szczególnym uwzględnieniem badań z dziedziny elektryczności atmosferycznej.SuperDARN (Super Dual Auroral Radar Network) is a global network of coherent scatter radars in the HF (High Frequency) band for studying the upper atmosphere, mesosphere, ionosphere, thermosphere and their coupling with the magnetosphere and solar wind. SuperDARN research topics in the field of atmospheric physics include mesospheric echoes, planetary waves and associated travelling ionospheric disturbances, and other manifestations of the interaction of neutral and ionised atmosphere. In the article we present prospects for the development of atmospheric research in Poland using SuperDARN radars, with particular emphasis on research studies in the field of atmospheric electricity

    Polar Regions in the Earth’s Global Atmospheric Electric Circuit Research

    No full text
    W artykule przedstawiono główne cechy ziemskich obszarów polarnych, Arktyki i Antarktyki, z punktu widzenia ich przynależności do globalnego atmosferycznego obwodu elektrycznego Ziemi oraz połączenia z układem prądów elektrycznych magnetosfery Ziemi. Omówiono lokalizację i chronologię obserwacji i badań elektryczności atmosfery w regionach polarnych do roku 2015, których znacząca liczba miała miejsce w czasie dużych przedsięwzięć geofizycznych, takich jak Międzynarodowe Lata Polarne i Międzynarodowy Rok Geofizyczny. Osobno dokonano przeglądu najważniejszych wyników badań elektryczności atmosfery w polskich stacjach polarnych – im. S. Sie¬dleckiego w Hornsundzie na Spitsbergenie w Arktyce i im. H. Arctowskiego na Wyspie Króla Jerzego w Antarktyce. Na zakończenie przedstawiono możliwe kierunki rozwoju badań elektryczności atmosfery z wykorzystaniem polskich stacji polarnych oraz pola interdyscyplinarnej współpracy naukowej.The article presents the main features of the polar regions, Arctic and Antarctic, from the point of view of the Earth’s global atmospheric electric circuit and its connection to the electric current system of the Earth’s magnetosphere. The chronology of observations and research studies of atmospheric electricity in polar regions up to 2015 is presented, including main geophysical events such as International Polar Years and International Geophysical Year. Research studies on atmospheric electricity based on measurements at Polish polar stations: S. Siedlecki Polar Station in Hornsund, Spitsbergen, and H. Arctowski Antarctic Station on King George Island, have been reviewed separately. Article concludes with the possible directions of development of atmospheric electricity research using Polish polar stations and potential fields of interdisciplinary scientific cooperation

    SuperDARN in Poland – a perspective

    No full text
    SuperDARN (Super Dual Auroral Radar Network) jest światową siecią radarów do badania górnych warstw atmosfery, jonosfery i ich sprzężenia z magnetosferą i wiatrem słonecznym (Greenwald i in. 1995; Chisham i in. 2007; Lester 2008, 2013, Nishitani i in. 2019). W artykule przybliżamy szczegóły techniczne, tematy badawcze i publikacje związane z działalnością SuperDARN oraz korzyści płynące z polskiego w nim udziału, który mógłby wzmocnić badania krajowe, jak i współpracę międzynarodową oraz otworzyć nowe tematy badawcze. Zanim to będzie możliwe, należy rozwiązać kilka technicznych kwestii, których tło i perspektywy nakreślamy.SuperDARN (Super Dual Auroral Radar Network) is a global radar network for studying the upper atmosphere, ionosphere, thermosphere and mesosphere and their coupling with the magnetosphere and solar wind (Greenwald et al. 1995; Chisham et al. 2007; Lester 2008, 2013, Nishitani et al. 2019). In the article we bring closer to national readers the SuperDARN network through describing its technical details, projects and publications. In addition to strengthening present research Polish participation in SuperDARN could result in development of new topics in national research and in international cooperation. Before it is possible, several technical issues should be solved, the background and perspectives of which we outline in the article

    Cloud‐to‐ground lightning dipole moment from simultaneous observations by ELF receiver and combined direction finding and time‐of‐arrival lightning detection system

    No full text
    We present a new method of automatic detection of ELF impulses related to cloud‐to‐ground lightning at distances 1–2 Mm from a broadband ELF receiver and also we present a new numerical automated technique for calculating the lightning dipole moment. We have performed the detection for two known data sets of lightning flashes detected by the French lightning detection network Meteorage in southwest Europe over two 48 h periods 28–29 July and 6–7 September 2005. The number of flashes identified in the ELF data compared to the number of flashes detected by Meteorage reach 10–25% when little local activity close to the ELF station is present. The local thunderstorm activity worsens the detection of lightning from larger distances and the efficiency of identification of ELF impulses as lightning can decrease to a few percent. By combining the information on the location of the lightning flashes from Meteorage with the ELF data, lightning dipole moments can be calculated. Our results suggest the dipole moment is linearly correlated with the lightning peak current (p ≃ 7.5 Imax) but the dispersion of the dipole moment for a given peak current is significant. One of the reasons of such dispersion is the contribution of the lightning continuing current to the ELF signal

    AC and DC global electric circuit properties and the height profile of atmospheric conductivity

    No full text
    An apparent discrepancy is pointed out - at all heights, and by up to an order of magnitude - between the height profiles of atmospheric conductivity derived at AC using ELF propagation studies, especially from information on Schumann resonance of the Earth-ionosphere cavity, and using a model of the DC global atmospheric electric circuit. This serious issue is resolved by creating a hybrid profile of these two mid-latitude profiles, the first of which refers to conditions by day and the second by night. This hybrid profile is thus a first order attempt to represent globally averaged conditions. Close to the Earth’s surface, where the resistance of the atmosphere is largest, the properties of the DC global model exert the greatest influence, whereas in the middle atmosphere, at heights between 40 and 100 km, full wave computations show that the AC results are the more crucial. The globally averaged hybrid profile presented here has some limitations, and the physical reasons for these are addressed. They are due to the presence of aerosol particles of ice and/or of meteoric material which reduce the ionospheric D-region conductivity by an order of magnitude over only ~2 km of height, thereby causing ledges of ionisation. In the context of the globally averaged profile, published observations of the ionospheric effects of the giant gamma-ray flare from SGR 1806-20 (a neutron star having an enormously large magnetic field) occurring at 21:30 U.T. on December 27, 2004, are briefly discussed
    corecore